Mercurial > hg > octave-lyh
view liboctave/fCNDArray.cc @ 7922:935be827eaf8
error for NaN values in & and | expressions
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 Jul 2008 14:56:30 -0400 |
parents | 82be108cc558 |
children | 25bc2d31e1bf |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996, 1997, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "fCNDArray.h" #include "mx-base.h" #include "f77-fcn.h" #include "functor.h" #include "lo-ieee.h" #include "lo-mappers.h" #if defined (HAVE_FFTW3) #include "oct-fftw.h" #else extern "C" { F77_RET_T F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*); F77_RET_T F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*, FloatComplex*); F77_RET_T F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*, FloatComplex*); } #endif #if defined (HAVE_FFTW3) FloatComplexNDArray FloatComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatComplexNDArray::fourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const FloatComplex *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const FloatComplex *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else FloatComplexNDArray FloatComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<float> (npts); } } return retval; } FloatComplexNDArray FloatComplexNDArray::fourier2d (void) const { dim_vector dv = dims (); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } FloatComplexNDArray FloatComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray FloatComplexNDArray::operator ! (void) const { boolNDArray b (dims ()); for (octave_idx_type i = 0; i < length (); i++) b.elem (i) = elem (i) == static_cast<float> (0.0); return b; } // FIXME -- this is not quite the right thing. bool FloatComplexNDArray::any_element_is_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { FloatComplex val = elem (i); if (xisnan (val)) return true; } return false; } bool FloatComplexNDArray::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { FloatComplex val = elem (i); if (xisinf (val) || xisnan (val)) return true; } return false; } // Return true if no elements have imaginary components. bool FloatComplexNDArray::all_elements_are_real (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float ip = std::imag (elem (i)); if (ip != 0.0 || lo_ieee_signbit (ip)) return false; } return true; } // Return nonzero if any element of CM has a non-integer real or // imaginary part. Also extract the largest and smallest (real or // imaginary) values and return them in MAX_VAL and MIN_VAL. bool FloatComplexNDArray::all_integers (float& max_val, float& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { FloatComplex val = elem (0); float r_val = std::real (val); float i_val = std::imag (val); max_val = r_val; min_val = r_val; if (i_val > max_val) max_val = i_val; if (i_val < max_val) min_val = i_val; } else return false; for (octave_idx_type i = 0; i < nel; i++) { FloatComplex val = elem (i); float r_val = std::real (val); float i_val = std::imag (val); if (r_val > max_val) max_val = r_val; if (i_val > max_val) max_val = i_val; if (r_val < min_val) min_val = r_val; if (i_val < min_val) min_val = i_val; if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) return false; } return true; } bool FloatComplexNDArray::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { FloatComplex val = elem (i); float r_val = std::real (val); float i_val = std::imag (val); if ((! (xisnan (r_val) || xisinf (r_val)) && fabs (r_val) > FLT_MAX) || (! (xisnan (i_val) || xisinf (i_val)) && fabs (i_val) > FLT_MAX)) return true; } return false; } boolNDArray FloatComplexNDArray::all (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (elem (iter_idx) == FloatComplex (0, 0)), true); } boolNDArray FloatComplexNDArray::any (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (elem (iter_idx) != FloatComplex (0, 0) && ! (lo_ieee_isnan (std::real (elem (iter_idx))) || lo_ieee_isnan (std::imag (elem (iter_idx))))), false); } FloatComplexNDArray FloatComplexNDArray::cumprod (int dim) const { MX_ND_CUMULATIVE_OP (FloatComplexNDArray, FloatComplex, FloatComplex (1, 0), *); } FloatComplexNDArray FloatComplexNDArray::cumsum (int dim) const { MX_ND_CUMULATIVE_OP (FloatComplexNDArray, FloatComplex, FloatComplex (0, 0), +); } FloatComplexNDArray FloatComplexNDArray::prod (int dim) const { MX_ND_REDUCTION (retval(result_idx) *= elem (iter_idx), FloatComplex (1, 0), FloatComplexNDArray); } FloatComplexNDArray FloatComplexNDArray::sumsq (int dim) const { MX_ND_REDUCTION (retval(result_idx) += std::imag (elem (iter_idx)) ? elem (iter_idx) * conj (elem (iter_idx)) : std::pow (elem (iter_idx), 2), FloatComplex (0, 0), FloatComplexNDArray); } FloatComplexNDArray FloatComplexNDArray::sum (int dim) const { MX_ND_REDUCTION (retval(result_idx) += elem (iter_idx), FloatComplex (0, 0), FloatComplexNDArray); } FloatComplexNDArray FloatComplexNDArray::concat (const FloatComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } FloatComplexNDArray FloatComplexNDArray::concat (const FloatNDArray& rb, const Array<octave_idx_type>& ra_idx) { FloatComplexNDArray tmp (rb); if (rb.numel () > 0) insert (tmp, ra_idx); return *this; } FloatComplexNDArray concat (NDArray& ra, FloatComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { FloatComplexNDArray retval (ra); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } static const FloatComplex FloatComplex_NaN_result (octave_Float_NaN, octave_Float_NaN); FloatComplexNDArray FloatComplexNDArray::max (int dim) const { ArrayN<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } FloatComplexNDArray FloatComplexNDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return FloatComplexNDArray (); dr(dim) = 1; FloatComplexNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; FloatComplex tmp_max; float abs_max = octave_Float_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_max = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_max)) { abs_max = std::abs(tmp_max); break; } } for (octave_idx_type j = idx_j+1; j < x_len; j++) { FloatComplex tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; float abs_tmp = std::abs (tmp); if (abs_tmp > abs_max) { idx_j = j; tmp_max = tmp; abs_max = abs_tmp; } } if (xisnan (tmp_max)) { result.elem (i) = FloatComplex_NaN_result; idx_arg.elem (i) = 0; } else { result.elem (i) = tmp_max; idx_arg.elem (i) = idx_j; } } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } FloatComplexNDArray FloatComplexNDArray::min (int dim) const { ArrayN<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } FloatComplexNDArray FloatComplexNDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return FloatComplexNDArray (); dr(dim) = 1; FloatComplexNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; FloatComplex tmp_min; float abs_min = octave_Float_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_min = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_min)) { abs_min = std::abs(tmp_min); break; } } for (octave_idx_type j = idx_j+1; j < x_len; j++) { FloatComplex tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; float abs_tmp = std::abs (tmp); if (abs_tmp < abs_min) { idx_j = j; tmp_min = tmp; abs_min = abs_tmp; } } if (xisnan (tmp_min)) { result.elem (i) = FloatComplex_NaN_result; idx_arg.elem (i) = 0; } else { result.elem (i) = tmp_min; idx_arg.elem (i) = idx_j; } } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } FloatNDArray FloatComplexNDArray::abs (void) const { FloatNDArray retval (dims ()); octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) retval(i) = std::abs (elem (i)); return retval; } FloatComplexNDArray& FloatComplexNDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) { dim_vector a_dv = a.dims (); int n = a_dv.length (); if (n == dimensions.length ()) { Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); a_ra_idx.elem (0) = r; a_ra_idx.elem (1) = c; for (int i = 0; i < n; i++) { if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) { (*current_liboctave_error_handler) ("Array<T>::insert: range error for insert"); return *this; } } a_ra_idx.elem (0) = 0; a_ra_idx.elem (1) = 0; octave_idx_type n_elt = a.numel (); // IS make_unique () NECCESSARY HERE?? for (octave_idx_type i = 0; i < n_elt; i++) { Array<octave_idx_type> ra_idx = a_ra_idx; ra_idx.elem (0) = a_ra_idx (0) + r; ra_idx.elem (1) = a_ra_idx (1) + c; elem (ra_idx) = a.elem (a_ra_idx); increment_index (a_ra_idx, a_dv); } } else (*current_liboctave_error_handler) ("Array<T>::insert: invalid indexing operation"); return *this; } FloatComplexNDArray& FloatComplexNDArray::insert (const FloatComplexNDArray& a, octave_idx_type r, octave_idx_type c) { Array<FloatComplex>::insert (a, r, c); return *this; } FloatComplexNDArray& FloatComplexNDArray::insert (const FloatComplexNDArray& a, const Array<octave_idx_type>& ra_idx) { Array<FloatComplex>::insert (a, ra_idx); return *this; } FloatComplexMatrix FloatComplexNDArray::matrix_value (void) const { FloatComplexMatrix retval; int nd = ndims (); switch (nd) { case 1: retval = FloatComplexMatrix (Array2<FloatComplex> (*this, dimensions(0), 1)); break; case 2: retval = FloatComplexMatrix (Array2<FloatComplex> (*this, dimensions(0), dimensions(1))); break; default: (*current_liboctave_error_handler) ("invalid conversion of FloatComplexNDArray to FloatComplexMatrix"); break; } return retval; } void FloatComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type FloatComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } FloatComplexNDArray FloatComplexNDArray::diag (octave_idx_type k) const { return MArrayN<FloatComplex>::diag (k); } FloatNDArray FloatComplexNDArray::map (dmapper fcn) const { return MArrayN<FloatComplex>::map<float> (func_ptr (fcn)); } FloatComplexNDArray FloatComplexNDArray::map (cmapper fcn) const { return MArrayN<FloatComplex>::map<FloatComplex> (func_ptr (fcn)); } boolNDArray FloatComplexNDArray::map (bmapper fcn) const { return MArrayN<FloatComplex>::map<bool> (func_ptr (fcn)); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const FloatComplexNDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_complex (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, FloatComplexNDArray& a) { octave_idx_type nel = a.nelem (); if (nel < 1 ) is.clear (std::ios::badbit); else { FloatComplex tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_complex (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } // FIXME -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nel == 0) \ return T (dv); FloatComplexNDArray min (const FloatComplex& c, const FloatComplexNDArray& m) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (c, m (i)); } return result; } FloatComplexNDArray min (const FloatComplexNDArray& m, const FloatComplex& c) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (c, m (i)); } return result; } FloatComplexNDArray min (const FloatComplexNDArray& a, const FloatComplexNDArray& b) { dim_vector dv = a.dims (); int nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg min expecting args of same size"); return FloatComplexNDArray (); } EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (a (i), b (i)); } return result; } FloatComplexNDArray max (const FloatComplex& c, const FloatComplexNDArray& m) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (c, m (i)); } return result; } FloatComplexNDArray max (const FloatComplexNDArray& m, const FloatComplex& c) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (c, m (i)); } return result; } FloatComplexNDArray max (const FloatComplexNDArray& a, const FloatComplexNDArray& b) { dim_vector dv = a.dims (); int nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg max expecting args of same size"); return FloatComplexNDArray (); } EMPTY_RETURN_CHECK (FloatComplexNDArray); FloatComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (a (i), b (i)); } return result; } NDS_CMP_OPS(FloatComplexNDArray, std::real, FloatComplex, std::real) NDS_BOOL_OPS(FloatComplexNDArray, FloatComplex, static_cast<float> (0.0)) SND_CMP_OPS(FloatComplex, std::real, FloatComplexNDArray, std::real) SND_BOOL_OPS(FloatComplex, FloatComplexNDArray, static_cast<float> (0.0)) NDND_CMP_OPS(FloatComplexNDArray, std::real, FloatComplexNDArray, std::real) NDND_BOOL_OPS(FloatComplexNDArray, FloatComplexNDArray, static_cast<float> (0.0)) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */