Mercurial > hg > octave-lyh
view liboctave/fNDArray.cc @ 7922:935be827eaf8
error for NaN values in & and | expressions
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 Jul 2008 14:56:30 -0400 |
parents | 82be108cc558 |
children | 25bc2d31e1bf |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996, 1997, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "fNDArray.h" #include "functor.h" #include "mx-base.h" #include "f77-fcn.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #if defined (HAVE_FFTW3) #include "oct-fftw.h" FloatComplexNDArray FloatNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const float *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); FloatComplexNDArray retval (*this); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (out + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatNDArray::fourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const float *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatNDArray::ifourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); FloatComplexNDArray retval (*this); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const float *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } FloatComplexNDArray FloatNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray tmp (*this); FloatComplex *in (tmp.fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else extern "C" { // Note that the original complex fft routines were not written for // float complex arguments. They have been modified by adding an // implicit float precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*); F77_RET_T F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*, FloatComplex*); F77_RET_T F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*, FloatComplex*); } FloatComplexNDArray FloatNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } FloatComplexNDArray FloatNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<float> (npts); } } return retval; } FloatComplexNDArray FloatNDArray::fourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatNDArray::ifourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } FloatComplexNDArray FloatNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray FloatNDArray::operator ! (void) const { boolNDArray b (dims ()); for (octave_idx_type i = 0; i < length (); i++) b.elem (i) = ! elem (i); return b; } bool FloatNDArray::any_element_is_negative (bool neg_zero) const { octave_idx_type nel = nelem (); if (neg_zero) { for (octave_idx_type i = 0; i < nel; i++) if (lo_ieee_signbit (elem (i))) return true; } else { for (octave_idx_type i = 0; i < nel; i++) if (elem (i) < 0) return true; } return false; } bool FloatNDArray::any_element_is_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (xisnan (val)) return true; } return false; } bool FloatNDArray::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (xisinf (val) || xisnan (val)) return true; } return false; } bool FloatNDArray::any_element_not_one_or_zero (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (val != 0 && val != 1) return true; } return false; } bool FloatNDArray::all_elements_are_zero (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) if (elem (i) != 0) return false; return true; } bool FloatNDArray::all_elements_are_int_or_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (xisnan (val) || D_NINT (val) == val) continue; else return false; } return true; } // Return nonzero if any element of M is not an integer. Also extract // the largest and smallest values and return them in MAX_VAL and MIN_VAL. bool FloatNDArray::all_integers (float& max_val, float& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { max_val = elem (0); min_val = elem (0); } else return false; for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (val > max_val) max_val = val; if (val < min_val) min_val = val; if (D_NINT (val) != val) return false; } return true; } bool FloatNDArray::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (! (xisnan (val) || xisinf (val)) && fabs (val) > FLT_MAX) return true; } return false; } // FIXME -- this is not quite the right thing. boolNDArray FloatNDArray::all (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); } boolNDArray FloatNDArray::any (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (elem (iter_idx) != 0 && ! lo_ieee_isnan (elem (iter_idx))), false); } FloatNDArray FloatNDArray::cumprod (int dim) const { MX_ND_CUMULATIVE_OP (FloatNDArray, float, 1, *); } FloatNDArray FloatNDArray::cumsum (int dim) const { MX_ND_CUMULATIVE_OP (FloatNDArray, float, 0, +); } FloatNDArray FloatNDArray::prod (int dim) const { MX_ND_REDUCTION (retval(result_idx) *= elem (iter_idx), 1, FloatNDArray); } FloatNDArray FloatNDArray::sumsq (int dim) const { MX_ND_REDUCTION (retval(result_idx) += std::pow (elem (iter_idx), 2), 0, FloatNDArray); } FloatNDArray FloatNDArray::sum (int dim) const { MX_ND_REDUCTION (retval(result_idx) += elem (iter_idx), 0, FloatNDArray); } FloatNDArray FloatNDArray::max (int dim) const { ArrayN<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } FloatNDArray FloatNDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return FloatNDArray (); dr(dim) = 1; FloatNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; float tmp_max = octave_Float_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_max = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_max)) break; } for (octave_idx_type j = idx_j+1; j < x_len; j++) { float tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; else if (tmp > tmp_max) { idx_j = j; tmp_max = tmp; } } result.elem (i) = tmp_max; idx_arg.elem (i) = xisnan (tmp_max) ? 0 : idx_j; } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } FloatNDArray FloatNDArray::min (int dim) const { ArrayN<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } FloatNDArray FloatNDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return FloatNDArray (); dr(dim) = 1; FloatNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; float tmp_min = octave_Float_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_min = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_min)) break; } for (octave_idx_type j = idx_j+1; j < x_len; j++) { float tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; else if (tmp < tmp_min) { idx_j = j; tmp_min = tmp; } } result.elem (i) = tmp_min; idx_arg.elem (i) = xisnan (tmp_min) ? 0 : idx_j; } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } FloatNDArray FloatNDArray::concat (const FloatNDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } FloatComplexNDArray FloatNDArray::concat (const FloatComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { FloatComplexNDArray retval (*this); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } charNDArray FloatNDArray::concat (const charNDArray& rb, const Array<octave_idx_type>& ra_idx) { charNDArray retval (dims ()); octave_idx_type nel = numel (); for (octave_idx_type i = 0; i < nel; i++) { float d = elem (i); if (xisnan (d)) { (*current_liboctave_error_handler) ("invalid conversion from NaN to character"); return retval; } else { octave_idx_type ival = NINTbig (d); if (ival < 0 || ival > UCHAR_MAX) // FIXME -- is there something // better we could do? Should we warn the user? ival = 0; retval.elem (i) = static_cast<char>(ival); } } if (rb.numel () == 0) return retval; retval.insert (rb, ra_idx); return retval; } FloatNDArray real (const FloatComplexNDArray& a) { octave_idx_type a_len = a.length (); FloatNDArray retval; if (a_len > 0) retval = FloatNDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); return retval; } FloatNDArray imag (const FloatComplexNDArray& a) { octave_idx_type a_len = a.length (); FloatNDArray retval; if (a_len > 0) retval = FloatNDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); return retval; } FloatNDArray& FloatNDArray::insert (const FloatNDArray& a, octave_idx_type r, octave_idx_type c) { Array<float>::insert (a, r, c); return *this; } FloatNDArray& FloatNDArray::insert (const FloatNDArray& a, const Array<octave_idx_type>& ra_idx) { Array<float>::insert (a, ra_idx); return *this; } FloatNDArray FloatNDArray::abs (void) const { FloatNDArray retval (dims ()); octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) retval(i) = fabs (elem (i)); return retval; } Matrix FloatNDArray::matrix_value (void) const { Matrix retval; int nd = ndims (); switch (nd) { case 1: retval = Matrix (Array2<float> (*this, dimensions(0), 1)); break; case 2: retval = Matrix (Array2<float> (*this, dimensions(0), dimensions(1))); break; default: (*current_liboctave_error_handler) ("invalid conversion of FloatNDArray to Matrix"); break; } return retval; } void FloatNDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type FloatNDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } FloatNDArray FloatNDArray::diag (octave_idx_type k) const { return MArrayN<float>::diag (k); } FloatNDArray FloatNDArray::map (dmapper fcn) const { return MArrayN<float>::map<float> (func_ptr (fcn)); } FloatComplexNDArray FloatNDArray::map (cmapper fcn) const { return MArrayN<float>::map<FloatComplex> (func_ptr (fcn)); } boolNDArray FloatNDArray::map (bmapper fcn) const { return MArrayN<float>::map<bool> (func_ptr (fcn)); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const FloatNDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_float (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, FloatNDArray& a) { octave_idx_type nel = a.nelem (); if (nel < 1 ) is.clear (std::ios::badbit); else { float tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_float (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } // FIXME -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nel == 0) \ return T (dv); FloatNDArray min (float d, const FloatNDArray& m) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (d, m (i)); } return result; } FloatNDArray min (const FloatNDArray& m, float d) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (d, m (i)); } return result; } FloatNDArray min (const FloatNDArray& a, const FloatNDArray& b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg min expecting args of same size"); return FloatNDArray (); } EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (a (i), b (i)); } return result; } FloatNDArray max (float d, const FloatNDArray& m) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (d, m (i)); } return result; } FloatNDArray max (const FloatNDArray& m, float d) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (d, m (i)); } return result; } FloatNDArray max (const FloatNDArray& a, const FloatNDArray& b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg max expecting args of same size"); return FloatNDArray (); } EMPTY_RETURN_CHECK (FloatNDArray); FloatNDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (a (i), b (i)); } return result; } NDS_CMP_OPS(FloatNDArray, , float, ) NDS_BOOL_OPS(FloatNDArray, float, static_cast<float> (0.0)) SND_CMP_OPS(float, , FloatNDArray, ) SND_BOOL_OPS(float, FloatNDArray, static_cast<float> (0.0)) NDND_CMP_OPS(FloatNDArray, , FloatNDArray, ) NDND_BOOL_OPS(FloatNDArray, FloatNDArray, static_cast<float> (0.0)) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */