Mercurial > hg > octave-lyh
view liboctave/oct-inttypes.h @ 7922:935be827eaf8
error for NaN values in & and | expressions
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 Jul 2008 14:56:30 -0400 |
parents | 82be108cc558 |
children | 2b8952e133c9 |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_inttypes_h) #define octave_inttypes_h 1 #include <climits> #include <limits> #include <iostream> #include "oct-types.h" #include "lo-ieee.h" #include "lo-mappers.h" template <class T1, class T2> class octave_int_binop_traits { public: // The return type for a T1 by T2 binary operation. typedef T1 TR; }; #define OCTAVE_INT_BINOP_TRAIT(T1, T2, T3) \ template<> \ class octave_int_binop_traits <T1, T2> \ { \ public: \ typedef T3 TR; \ } OCTAVE_INT_BINOP_TRAIT (int8_t, int8_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, int16_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, int32_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, int64_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, uint8_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, uint16_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, uint32_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int8_t, uint64_t, int8_t); OCTAVE_INT_BINOP_TRAIT (int16_t, int8_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, int16_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, int32_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, int64_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, uint8_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, uint16_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, uint32_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int16_t, uint64_t, int16_t); OCTAVE_INT_BINOP_TRAIT (int32_t, int8_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, int16_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, int32_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, int64_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, uint8_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, uint16_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, uint32_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int32_t, uint64_t, int32_t); OCTAVE_INT_BINOP_TRAIT (int64_t, int8_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, int16_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, int32_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, int64_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, uint8_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, uint16_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, uint32_t, int64_t); OCTAVE_INT_BINOP_TRAIT (int64_t, uint64_t, int64_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, int8_t, int8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, int16_t, int8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, int32_t, int8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, int64_t, int8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, uint8_t, uint8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, uint16_t, uint8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, uint32_t, uint8_t); OCTAVE_INT_BINOP_TRAIT (uint8_t, uint64_t, uint8_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, int8_t, int16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, int16_t, int16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, int32_t, int16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, int64_t, int16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, uint8_t, uint16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, uint16_t, uint16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, uint32_t, uint16_t); OCTAVE_INT_BINOP_TRAIT (uint16_t, uint64_t, uint16_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, int8_t, int32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, int16_t, int32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, int32_t, int32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, int64_t, int32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, uint8_t, uint32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, uint16_t, uint32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, uint32_t, uint32_t); OCTAVE_INT_BINOP_TRAIT (uint32_t, uint64_t, uint32_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, int8_t, int64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, int16_t, int64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, int32_t, int64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, int64_t, int64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, uint8_t, uint64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, uint16_t, uint64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, uint32_t, uint64_t); OCTAVE_INT_BINOP_TRAIT (uint64_t, uint64_t, uint64_t); template <class T1, class T2> inline T2 octave_int_fit_to_range (const T1& x, const T2& mn, const T2& mx) { return (x > mx ? mx : (x < mn ? mn : T2 (x))); } template <typename T> inline T octave_int_fit_to_range (const double& x, const T& mn, const T& mx) { return (__lo_ieee_isnan (x) ? 0 : (x > mx ? mx : (x < mn ? mn : static_cast<T> (x)))); } // If X is unsigned and the new type is signed, then we only have to // check the upper limit, but we should cast the maximum value of the // new type to an unsigned type before performing the comparison. // This should always be OK because the maximum value should always be // positive. #define OCTAVE_US_S_FTR(T1, T2, TC) \ template <> \ inline T2 \ octave_int_fit_to_range<T1, T2> (const T1& x, const T2&, const T2& mx) \ { \ return x > static_cast<TC> (mx) ? mx : x; \ } #define OCTAVE_US_S_FTR_FCNS(T) \ OCTAVE_US_S_FTR (T, char, unsigned char) \ OCTAVE_US_S_FTR (T, signed char, unsigned char) \ OCTAVE_US_S_FTR (T, short, unsigned short) \ OCTAVE_US_S_FTR (T, int, unsigned int) \ OCTAVE_US_S_FTR (T, long, unsigned long) \ OCTAVE_US_S_FTR (T, long long, unsigned long long) OCTAVE_US_S_FTR_FCNS (unsigned char) OCTAVE_US_S_FTR_FCNS (unsigned short) OCTAVE_US_S_FTR_FCNS (unsigned int) OCTAVE_US_S_FTR_FCNS (unsigned long) OCTAVE_US_S_FTR_FCNS (unsigned long long) // If X is signed and the new type is unsigned, then we only have to // check the lower limit (which will always be 0 for an unsigned // type). The upper limit will be enforced correctly by converting to // the new type, even if the type of X is wider than the new type. #define OCTAVE_S_US_FTR(T1, T2) \ template <> \ inline T2 \ octave_int_fit_to_range<T1, T2> (const T1& x, const T2&, const T2&) \ { \ return x <= 0 ? 0 : x; \ } #define OCTAVE_S_US_FTR_FCNS(T) \ OCTAVE_S_US_FTR (T, unsigned char) \ OCTAVE_S_US_FTR (T, unsigned short) \ OCTAVE_S_US_FTR (T, unsigned int) \ OCTAVE_S_US_FTR (T, unsigned long) \ OCTAVE_S_US_FTR (T, unsigned long long) OCTAVE_S_US_FTR_FCNS (char) OCTAVE_S_US_FTR_FCNS (signed char) OCTAVE_S_US_FTR_FCNS (short) OCTAVE_S_US_FTR_FCNS (int) OCTAVE_S_US_FTR_FCNS (long) OCTAVE_S_US_FTR_FCNS (long long) #define OCTAVE_INT_FIT_TO_RANGE(r, T) \ octave_int_fit_to_range (r, \ std::numeric_limits<T>::min (), \ std::numeric_limits<T>::max ()) #define OCTAVE_INT_MIN_VAL2(T1, T2) \ std::numeric_limits<typename octave_int_binop_traits<T1, T2>::TR>::min () #define OCTAVE_INT_MAX_VAL2(T1, T2) \ std::numeric_limits<typename octave_int_binop_traits<T1, T2>::TR>::max () #define OCTAVE_INT_FIT_TO_RANGE2(r, T1, T2) \ octave_int_fit_to_range (r, \ OCTAVE_INT_MIN_VAL2 (T1, T2), \ OCTAVE_INT_MAX_VAL2 (T1, T2)) // We have all the machinery below (octave_int_helper) to avoid a few // warnings from GCC about comparisons always false due to limited // range of data types. Ugh. The cure may be worse than the disease. // FIXME -- it would be nice to nest the helper class inside the // octave_int class, but I don't see the magic for that at the moment. template <class T> class octave_int; template <class T, bool is_signed> class octave_int_helper { public: static octave_int<T> abs (const T& x); static octave_int<T> signum (const T& x); template <class T2> static void rshift_eq (T& ival, const T2& x); }; template <class T> class octave_int_helper<T, false> { public: static octave_int<T> abs (const T& x) { return x; } static octave_int<T> signum (const T& x) { return x > 0 ? 1 : 0; } template <class T2> static void rshift_eq (T& ival, const T2& x) { ival = ival >> x; } }; template <class T> class octave_int_helper<T, true> { public: static octave_int<T> abs (const T& x) { return x < 0 ? -x : x; } static octave_int<T> signum (const T& x) { return x < 0 ? -1 : (x > 0 ? 1 : 0); } template <class T2> static void rshift_eq (T& ival, const T2& x) { if (ival < 0) ival = - (((-ival) >> x) & std::numeric_limits<T>::max()); else ival = ival >> x; } }; template <class T> class octave_int { public: typedef T val_type; octave_int (void) : ival () { } template <class U> octave_int (U i) : ival (OCTAVE_INT_FIT_TO_RANGE (i, T)) { } octave_int (double d) : ival (OCTAVE_INT_FIT_TO_RANGE (xround (d), T)) { } octave_int (bool b) : ival (b) { } template <class U> octave_int (const octave_int<U>& i) : ival (OCTAVE_INT_FIT_TO_RANGE (i.value (), T)) { } octave_int (const octave_int<T>& i) : ival (i.ival) { } octave_int& operator = (const octave_int<T>& i) { ival = i.ival; return *this; } ~octave_int (void) { } T value (void) const { return ival; } const unsigned char * iptr (void) const { return reinterpret_cast<const unsigned char *> (& ival); } bool operator ! (void) const { return ! ival; } octave_int<T> operator + (void) const { return *this; } octave_int<T> operator - (void) const { // Can't just return -ival because signed types are not // symmetric, which causes things like -intmin("int32") to be the // same as intmin("int32") instead of intmax("int32") (which is // what we should get with saturation semantics). return std::numeric_limits<T>::is_signed ? OCTAVE_INT_FIT_TO_RANGE (- static_cast<double> (ival), T) : 0; } bool bool_value (void) const { return static_cast<bool> (value ()); } char char_value (void) const { return static_cast<char> (value ()); } double double_value (void) const { return static_cast<double> (value ()); } float float_value (void) const { return static_cast<float> (value ()); } operator T (void) const { return value (); } // char and bool operators intentionally omitted. operator double (void) const { return double_value (); } operator float (void) const { return float_value (); } octave_int<T>& operator += (const octave_int<T>& x) { double t = static_cast<double> (value ()); double tx = static_cast<double> (x.value ()); ival = OCTAVE_INT_FIT_TO_RANGE (t + tx, T); return *this; } octave_int<T>& operator -= (const octave_int<T>& x) { double t = static_cast<double> (value ()); double tx = static_cast<double> (x.value ()); ival = OCTAVE_INT_FIT_TO_RANGE (t - tx, T); return *this; } octave_int<T>& operator *= (const octave_int<T>& x) { double t = static_cast<double> (value ()); double tx = static_cast<double> (x.value ()); ival = OCTAVE_INT_FIT_TO_RANGE (t * tx, T); return *this; } octave_int<T>& operator /= (const octave_int<T>& x) { double t = static_cast<double> (value ()); double tx = static_cast<double> (x.value ()); double r = (t == 0 && tx == 0) ? 0 : xround (t / tx); ival = OCTAVE_INT_FIT_TO_RANGE (r, T); return *this; } template <class T2> octave_int<T>& operator <<= (const T2& x) { ival = ival << x; return *this; } // Use helper functions in the operator >>=, abs, and signum // functions to avoid "comparison of unsigned expression < 0 is // always false" warnings from GCC when instantiating these funtions // for unsigned types. template <class T2> octave_int<T>& operator >>= (const T2& x) { octave_int_helper<T, std::numeric_limits<T>::is_signed>::rshift_eq (ival, x); return *this; } octave_int<T> abs (void) const { return octave_int_helper<T, std::numeric_limits<T>::is_signed>::abs (value ()); } octave_int<T> signum (void) const { return octave_int_helper<T, std::numeric_limits<T>::is_signed>::signum (value ()); } octave_int<T> min (void) const { return std::numeric_limits<T>::min (); } octave_int<T> max (void) const { return std::numeric_limits<T>::max (); } static int nbits (void) { return sizeof (T) * CHAR_BIT; } static int byte_size (void) { return sizeof(T); } // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return const_cast<T *> (&ival); } private: T ival; }; template <class T> bool xisnan (const octave_int<T>&) { return false; } template <class T> octave_int<T> pow (const octave_int<T>& a, const octave_int<T>& b) { octave_int<T> retval; octave_int<T> zero = octave_int<T> (0); octave_int<T> one = octave_int<T> (1); if (b == zero) retval = one; else if (b < zero) retval = zero; else { octave_int<T> a_val = a; octave_int<T> b_val = b; retval = a; b_val -= 1; while (b_val != zero) { if ((b_val & one) != zero) retval = retval * a_val; b_val = b_val >> 1; if (b_val > zero) a_val = a_val * a_val; } } return retval; } template <class T> octave_int<T> pow (double a, const octave_int<T>& b) { double tb = static_cast<double> (b.value ()); double r = pow (a, tb); r = __lo_ieee_isnan (r) ? 0 : xround (r); return OCTAVE_INT_FIT_TO_RANGE (r, T); } template <class T> octave_int<T> pow (const octave_int<T>& a, double b) { double ta = static_cast<double> (a.value ()); double r = pow (ta, b); r = __lo_ieee_isnan (r) ? 0 : xround (r); return OCTAVE_INT_FIT_TO_RANGE (r, T); } template <class T> std::ostream& operator << (std::ostream& os, const octave_int<T>& ival) { os << ival.value (); return os; } template <class T> std::istream& operator >> (std::istream& is, octave_int<T>& ival) { T tmp = 0; is >> tmp; ival = tmp; return is; } typedef octave_int<int8_t> octave_int8; typedef octave_int<int16_t> octave_int16; typedef octave_int<int32_t> octave_int32; typedef octave_int<int64_t> octave_int64; typedef octave_int<uint8_t> octave_uint8; typedef octave_int<uint16_t> octave_uint16; typedef octave_int<uint32_t> octave_uint32; typedef octave_int<uint64_t> octave_uint64; #define OCTAVE_INT_BIN_OP(OP) \ template <class T1, class T2> \ octave_int<typename octave_int_binop_traits<T1, T2>::TR> \ operator OP (const octave_int<T1>& x, const octave_int<T2>& y) \ { \ double tx = static_cast<double> (x.value ()); \ double ty = static_cast<double> (y.value ()); \ double r = tx OP ty; \ return OCTAVE_INT_FIT_TO_RANGE2 (r, T1, T2); \ } OCTAVE_INT_BIN_OP(+) OCTAVE_INT_BIN_OP(-) OCTAVE_INT_BIN_OP(*) template <class T1, class T2> octave_int<typename octave_int_binop_traits<T1, T2>::TR> operator / (const octave_int<T1>& x, const octave_int<T2>& y) { double tx = static_cast<double> (x.value ()); double ty = static_cast<double> (y.value ()); double r = (tx == 0 && ty == 0) ? 0 : xround (tx / ty); return OCTAVE_INT_FIT_TO_RANGE2 (r, T1, T2); } #define OCTAVE_INT_DOUBLE_BIN_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (const octave_int<T>& x, double y) \ { \ double tx = static_cast<double> (x.value ()); \ double r = xround (tx OP y); \ r = __lo_ieee_isnan (r) ? 0 : xround (r); \ return OCTAVE_INT_FIT_TO_RANGE (r, T); \ } OCTAVE_INT_DOUBLE_BIN_OP(+) OCTAVE_INT_DOUBLE_BIN_OP(-) OCTAVE_INT_DOUBLE_BIN_OP(*) OCTAVE_INT_DOUBLE_BIN_OP(/) #define OCTAVE_DOUBLE_INT_BIN_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (double x, const octave_int<T>& y) \ { \ double ty = static_cast<double> (y.value ()); \ double r = x OP ty; \ r = __lo_ieee_isnan (r) ? 0 : xround (r); \ return OCTAVE_INT_FIT_TO_RANGE (r, T); \ } OCTAVE_DOUBLE_INT_BIN_OP(+) OCTAVE_DOUBLE_INT_BIN_OP(-) OCTAVE_DOUBLE_INT_BIN_OP(*) OCTAVE_DOUBLE_INT_BIN_OP(/) #define OCTAVE_INT_DOUBLE_CMP_OP(OP) \ template <class T> \ bool \ operator OP (const octave_int<T>& x, const double& y) \ { \ double tx = static_cast<double> (x.value ()); \ return tx OP y; \ } OCTAVE_INT_DOUBLE_CMP_OP (<) OCTAVE_INT_DOUBLE_CMP_OP (<=) OCTAVE_INT_DOUBLE_CMP_OP (>=) OCTAVE_INT_DOUBLE_CMP_OP (>) OCTAVE_INT_DOUBLE_CMP_OP (==) OCTAVE_INT_DOUBLE_CMP_OP (!=) #define OCTAVE_DOUBLE_INT_CMP_OP(OP) \ template <class T> \ bool \ operator OP (const double& x, const octave_int<T>& y) \ { \ double ty = static_cast<double> (y.value ()); \ return x OP ty; \ } OCTAVE_DOUBLE_INT_CMP_OP (<) OCTAVE_DOUBLE_INT_CMP_OP (<=) OCTAVE_DOUBLE_INT_CMP_OP (>=) OCTAVE_DOUBLE_INT_CMP_OP (>) OCTAVE_DOUBLE_INT_CMP_OP (==) OCTAVE_DOUBLE_INT_CMP_OP (!=) #define OCTAVE_INT_FLOAT_BIN_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (const octave_int<T>& x, float y) \ { \ double tx = static_cast<double> (x.value ()); \ double r = xround (tx OP y); \ r = __lo_ieee_isnan (r) ? 0 : xround (r); \ return OCTAVE_INT_FIT_TO_RANGE (r, T); \ } OCTAVE_INT_FLOAT_BIN_OP(+) OCTAVE_INT_FLOAT_BIN_OP(-) OCTAVE_INT_FLOAT_BIN_OP(*) OCTAVE_INT_FLOAT_BIN_OP(/) #define OCTAVE_FLOAT_INT_BIN_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (float x, const octave_int<T>& y) \ { \ double ty = static_cast<double> (y.value ()); \ double r = x OP ty; \ r = __lo_ieee_isnan (r) ? 0 : xround (r); \ return OCTAVE_INT_FIT_TO_RANGE (r, T); \ } OCTAVE_FLOAT_INT_BIN_OP(+) OCTAVE_FLOAT_INT_BIN_OP(-) OCTAVE_FLOAT_INT_BIN_OP(*) OCTAVE_FLOAT_INT_BIN_OP(/) #define OCTAVE_INT_FLOAT_CMP_OP(OP) \ template <class T> \ bool \ operator OP (const octave_int<T>& x, const float& y) \ { \ double tx = static_cast<double> (x.value ()); \ return tx OP y; \ } OCTAVE_INT_FLOAT_CMP_OP (<) OCTAVE_INT_FLOAT_CMP_OP (<=) OCTAVE_INT_FLOAT_CMP_OP (>=) OCTAVE_INT_FLOAT_CMP_OP (>) OCTAVE_INT_FLOAT_CMP_OP (==) OCTAVE_INT_FLOAT_CMP_OP (!=) #define OCTAVE_FLOAT_INT_CMP_OP(OP) \ template <class T> \ bool \ operator OP (const float& x, const octave_int<T>& y) \ { \ double ty = static_cast<double> (y.value ()); \ return x OP ty; \ } OCTAVE_FLOAT_INT_CMP_OP (<) OCTAVE_FLOAT_INT_CMP_OP (<=) OCTAVE_FLOAT_INT_CMP_OP (>=) OCTAVE_FLOAT_INT_CMP_OP (>) OCTAVE_FLOAT_INT_CMP_OP (==) OCTAVE_FLOAT_INT_CMP_OP (!=) #define OCTAVE_INT_BITCMP_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (const octave_int<T>& x, const octave_int<T>& y) \ { \ return x.value () OP y.value (); \ } OCTAVE_INT_BITCMP_OP (&) OCTAVE_INT_BITCMP_OP (|) OCTAVE_INT_BITCMP_OP (^) template <class T1, class T2> octave_int<T1> operator << (const octave_int<T1>& x, const T2& y) { octave_int<T1> retval = x; return retval <<= y; } template <class T1, class T2> octave_int<T1> operator >> (const octave_int<T1>& x, const T2& y) { octave_int<T1> retval = x; return retval >>= y; } template <class T> octave_int<T> bitshift (const octave_int<T>& a, int n, const octave_int<T>& mask = std::numeric_limits<T>::max ()) { if (n > 0) return (a << n) & mask; else if (n < 0) return (a >> -n) & mask; else return a; } #define OCTAVE_INT_CMP_OP(OP) \ template <class T1, class T2> \ bool \ operator OP (const octave_int<T1>& x, const octave_int<T2>& y) \ { \ return x.value () OP y.value (); \ } OCTAVE_INT_CMP_OP (<) OCTAVE_INT_CMP_OP (<=) OCTAVE_INT_CMP_OP (>=) OCTAVE_INT_CMP_OP (>) OCTAVE_INT_CMP_OP (==) OCTAVE_INT_CMP_OP (!=) // The following apply if the unsigned type is at least as wide as the // signed type (then we can cast postive signed values to the unsigned // type and compare). #define OCTAVE_US_TYPE1_CMP_OP_DECL(OP, LTZ_VAL, UT, ST) \ template <> \ bool \ OCTAVE_API operator OP (const octave_int<UT>& lhs, const octave_int<ST>& rhs); #define OCTAVE_US_TYPE1_CMP_OP_DECLS(UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (<, false, UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (<=, false, UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (>=, true, UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (>, true, UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (==, false, UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECL (!=, true, UT, ST) #define OCTAVE_SU_TYPE1_CMP_OP_DECL(OP, LTZ_VAL, ST, UT) \ template <> \ bool \ OCTAVE_API operator OP (const octave_int<ST>& lhs, const octave_int<UT>& rhs); #define OCTAVE_SU_TYPE1_CMP_OP_DECLS(ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (<, true, ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (<=, true, ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (>=, false, ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (>, false, ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (==, false, ST, UT) \ OCTAVE_SU_TYPE1_CMP_OP_DECL (!=, true, ST, UT) #define OCTAVE_TYPE1_CMP_OP_DECLS(UT, ST) \ OCTAVE_US_TYPE1_CMP_OP_DECLS (UT, ST) \ OCTAVE_SU_TYPE1_CMP_OP_DECLS (ST, UT) OCTAVE_TYPE1_CMP_OP_DECLS (uint32_t, int8_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint32_t, int16_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint32_t, int32_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint64_t, int8_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint64_t, int16_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint64_t, int32_t) OCTAVE_TYPE1_CMP_OP_DECLS (uint64_t, int64_t) // The following apply if the signed type is wider than the unsigned // type (then we can cast unsigned values to the signed type and // compare if the signed value is positive). #define OCTAVE_US_TYPE2_CMP_OP_DECL(OP, LTZ_VAL, UT, ST) \ template <> \ bool \ OCTAVE_API operator OP (const octave_int<UT>& lhs, const octave_int<ST>& rhs); #define OCTAVE_US_TYPE2_CMP_OP_DECLS(ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (<, false, ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (<=, false, ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (>=, true, ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (>, true, ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (==, false, ST, UT) \ OCTAVE_US_TYPE2_CMP_OP_DECL (!=, true, ST, UT) #define OCTAVE_SU_TYPE2_CMP_OP_DECL(OP, LTZ_VAL, ST, UT) \ template <> \ bool \ OCTAVE_API operator OP (const octave_int<ST>& lhs, const octave_int<UT>& rhs); #define OCTAVE_SU_TYPE2_CMP_OP_DECLS(ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (<, true, ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (<=, true, ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (>=, false, ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (>, false, ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (==, false, ST, UT) \ OCTAVE_SU_TYPE2_CMP_OP_DECL (!=, true, ST, UT) #define OCTAVE_TYPE2_CMP_OP_DECLS(UT, ST) \ OCTAVE_US_TYPE2_CMP_OP_DECLS (UT, ST) \ OCTAVE_SU_TYPE2_CMP_OP_DECLS (ST, UT) OCTAVE_TYPE2_CMP_OP_DECLS (uint32_t, int64_t) #undef OCTAVE_INT_BINOP_TRAIT #undef OCTAVE_US_S_FTR #undef OCTAVE_US_S_FTR_FCNS #undef OCTAVE_S_US_FTR #undef OCTAVE_S_US_FTR_FCNS #undef OCTAVE_INT_FIT_TO_RANGE #undef OCTAVE_INT_MIN_VAL2 #undef OCTAVE_INT_MAX_VAL2 #undef OCTAVE_INT_FIT_TO_RANGE2 #undef OCTAVE_INT_BIN_OP #undef OCTAVE_INT_DOUBLE_BIN_OP #undef OCTAVE_DOUBLE_INT_BIN_OP #undef OCTAVE_INT_DOUBLE_CMP_OP #undef OCTAVE_DOUBLE_INT_CMP_OP #undef OCTAVE_INT_BITCMP_OP #undef OCTAVE_INT_CMP_OP #undef OCTAVE_US_TYPE1_CMP_OP_DECL #undef OCTAVE_US_TYPE1_CMP_OP_DECLS #undef OCTAVE_SU_TYPE1_CMP_OP_DECL #undef OCTAVE_SU_TYPE1_CMP_OP_DECLS #undef OCTAVE_TYPE1_CMP_OP_DECLS #undef OCTAVE_US_TYPE2_CMP_OP_DECL #undef OCTAVE_US_TYPE2_CMP_OP_DECLS #undef OCTAVE_SU_TYPE2_CMP_OP_DECL #undef OCTAVE_SU_TYPE2_CMP_OP_DECLS #undef OCTAVE_TYPE2_CMP_OP_DECLS #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */