Mercurial > hg > octave-lyh
view scripts/general/interpft.m @ 14119:94e2a76f1e5a stable
doc: Final grammarcheck and spellcheck before 3.6.0 release.
* container.txi, aspell-octave.en.pws, expr.txi, vectorize.txi, accumarray.m,
accumdim.m, interpft.m, strread.m, parseparams.m, warning_ids.m, cellfun.cc,
help.cc: grammarcheck and spellcheck docstrings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Thu, 29 Dec 2011 06:05:00 -0800 |
parents | 5f96b91b4e0c |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2001-2011 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} interpft (@var{x}, @var{n}) ## @deftypefnx {Function File} {} interpft (@var{x}, @var{n}, @var{dim}) ## ## Fourier interpolation. If @var{x} is a vector, then @var{x} is ## resampled with @var{n} points. The data in @var{x} is assumed to be ## equispaced. If @var{x} is an array, then operate along each column of ## the array separately. If @var{dim} is specified, then interpolate ## along the dimension @var{dim}. ## ## @code{interpft} assumes that the interpolated function is periodic, ## and so assumptions are made about the endpoints of the interpolation. ## ## @seealso{interp1} ## @end deftypefn ## Author: Paul Kienzle ## 2001-02-11 ## * initial version ## 2002-03-17 aadler ## * added code to work on matrices as well ## 2006-05-25 dbateman ## * Make it matlab compatiable, cutting out the 2-D interpolation function z = interpft (x, n, dim) if (nargin < 2 || nargin > 3) print_usage (); endif if (! (isscalar (n) && n == fix (n))) error ("interpft: N must be a scalar integer"); endif if (nargin == 2) if (isrow (x)) dim = 2; else dim = 1; endif endif nd = ndims (x); if (dim < 1 || dim > nd) error ("interpft: invalid dimension DIM"); endif perm = [dim:nd, 1:(dim-1)]; x = permute (x, perm); m = rows (x); inc = max (1, fix (m/n)); y = fft (x) / m; k = floor (m / 2); sz = size (x); sz(1) = n * inc - m; idx = repmat ({':'}, nd, 1); idx{1} = 1:k; z = cat (1, y(idx{:}), zeros (sz)); idx{1} = k+1:m; z = cat (1, z, y(idx{:})); z = n * ifft (z); if (inc != 1) sz(1) = n; z = inc * reshape (z(1:inc:end), sz); endif z = ipermute (z, perm); endfunction %!demo %! t = 0 : 0.3 : pi; dt = t(2)-t(1); %! n = length (t); k = 100; %! ti = t(1) + [0 : k-1]*dt*n/k; %! y = sin (4*t + 0.3) .* cos (3*t - 0.1); %! yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1); %! plot (ti, yp, 'g', ti, interp1(t, y, ti, 'spline'), 'b', ... %! ti, interpft (y, k), 'c', t, y, 'r+'); %! legend ('sin(4t+0.3)cos(3t-0.1','spline','interpft','data'); %!shared n,y %! x = [0:10]'; y = sin(x); n = length (x); %!assert (interpft(y, n), y, 20*eps); %!assert (interpft(y', n), y', 20*eps); %!assert (interpft([y,y],n), [y,y], 20*eps); %% Test input validation %!error interpft () %!error interpft (1) %!error interpft (1,2,3) %!error (interpft(1,[n,n])) %!error (interpft(1,2,0)) %!error (interpft(1,2,3))