Mercurial > hg > octave-lyh
view scripts/polynomial/residue.m @ 17420:95bfa04ab514
Fix bug in colorbar demo #24.
set() is broken from deep within listener hierarchy. Workaround it.
* scripts/plot/colorbar.m(update_colorbar_clim): Set axis limits in listener
and then jiggle the axis position to force a redraw.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 11 Sep 2013 16:05:40 -0700 |
parents | 088d014a7fe2 |
children |
line wrap: on
line source
## Copyright (C) 1994-2012 John W. Eaton ## Copyright (C) 2007 Ben Abbott ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{r}, @var{p}, @var{k}, @var{e}] =} residue (@var{b}, @var{a}) ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}) ## @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e}) ## The first calling form computes the partial fraction expansion for the ## quotient of the polynomials, @var{b} and @var{a}. ## @tex ## $$ ## {B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m} ## + \sum_{i=1}^N k_i s^{N-i}. ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## B(s) M r(m) N ## ---- = SUM ------------- + SUM k(i)*s^(N-i) ## A(s) m=1 (s-p(m))^e(m) i=1 ## @end group ## @end example ## ## @end ifnottex ## @noindent ## where @math{M} is the number of poles (the length of the @var{r}, ## @var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1} ## representing the direct contribution, and the @var{e} vector specifies ## the multiplicity of the m-th residue's pole. ## ## For example, ## ## @example ## @group ## b = [1, 1, 1]; ## a = [1, -5, 8, -4]; ## [r, p, k, e] = residue (b, a) ## @result{} r = [-2; 7; 3] ## @result{} p = [2; 2; 1] ## @result{} k = [](0x0) ## @result{} e = [1; 2; 1] ## @end group ## @end example ## ## @noindent ## which represents the following partial fraction expansion ## @tex ## $$ ## {s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## s^2 + s + 1 -2 7 3 ## ------------------- = ----- + ------- + ----- ## s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1) ## @end group ## @end example ## ## @end ifnottex ## ## The second calling form performs the inverse operation and computes ## the reconstituted quotient of polynomials, @var{b}(s)/@var{a}(s), ## from the partial fraction expansion; represented by the residues, ## poles, and a direct polynomial specified by @var{r}, @var{p} and ## @var{k}, and the pole multiplicity @var{e}. ## ## If the multiplicity, @var{e}, is not explicitly specified the multiplicity is ## determined by the function @code{mpoles}. ## ## For example: ## ## @example ## @group ## r = [-2; 7; 3]; ## p = [2; 2; 1]; ## k = [1, 0]; ## [b, a] = residue (r, p, k) ## @result{} b = [1, -5, 9, -3, 1] ## @result{} a = [1, -5, 8, -4] ## ## where mpoles is used to determine e = [1; 2; 1] ## @end group ## @end example ## ## Alternatively the multiplicity may be defined explicitly, for example, ## ## @example ## @group ## r = [7; 3; -2]; ## p = [2; 1; 2]; ## k = [1, 0]; ## e = [2; 1; 1]; ## [b, a] = residue (r, p, k, e) ## @result{} b = [1, -5, 9, -3, 1] ## @result{} a = [1, -5, 8, -4] ## @end group ## @end example ## ## @noindent ## which represents the following partial fraction expansion ## @tex ## $$ ## {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## -2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1 ## ----- + ------- + ----- + s = -------------------------- ## (s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4 ## @end group ## @end example ## ## @end ifnottex ## @seealso{mpoles, poly, roots, conv, deconv} ## @end deftypefn ## Author: Tony Richardson <arichard@stark.cc.oh.us> ## Author: Ben Abbott <bpabbott@mac.com> ## Created: June 1994 ## Adapted-By: jwe function [r, p, k, e] = residue (b, a, varargin) if (nargin < 2 || nargin > 4) print_usage (); endif toler = .001; if (nargin >= 3) if (nargin >= 4) e = varargin{2}; else e = []; endif ## The inputs are the residue, pole, and direct part. Solve for the ## corresponding numerator and denominator polynomials [r, p] = rresidue (b, a, varargin{1}, toler, e); return; endif ## Make sure both polynomials are in reduced form. a = polyreduce (a); b = polyreduce (b); b = b / a(1); a = a / a(1); la = length (a); lb = length (b); ## Handle special cases here. if (la == 0 || lb == 0) k = r = p = e = []; return; elseif (la == 1) k = b / a; r = p = e = []; return; endif ## Find the poles. p = roots (a); lp = length (p); ## Sort poles so that multiplicity loop will work. [e, indx] = mpoles (p, toler, 1); p = p (indx); ## For each group of pole multiplicity, set the value of each ## pole to the average of the group. This reduces the error in ## the resulting poles. p_group = cumsum (e == 1); for ng = 1:p_group(end) m = find (p_group == ng); p(m) = mean (p(m)); endfor ## Find the direct term if there is one. if (lb >= la) ## Also return the reduced numerator. [k, b] = deconv (b, a); lb = length (b); else k = []; endif ## Determine if the poles are (effectively) zero. small = max (abs (p)); if (isa (a, "single") || isa (b, "single")) small = max ([small, 1]) * eps ("single") * 1e4 * (1 + numel (p))^2; else small = max ([small, 1]) * eps * 1e4 * (1 + numel (p))^2; endif p(abs (p) < small) = 0; ## Determine if the poles are (effectively) real, or imaginary. index = (abs (imag (p)) < small); p(index) = real (p(index)); index = (abs (real (p)) < small); p(index) = 1i * imag (p(index)); ## The remainder determines the residues. The case of one pole ## is trivial. if (lp == 1) r = polyval (b, p); return; endif ## Determine the order of the denominator and remaining numerator. ## With the direct term removed the potential order of the numerator ## is one less than the order of the denominator. aorder = numel (a) - 1; border = aorder - 1; ## Construct a system of equations relating the individual ## contributions from each residue to the complete numerator. A = zeros (border+1, border+1); B = prepad (reshape (b, [numel(b), 1]), border+1, 0); for ip = 1:numel (p) ri = zeros (size (p)); ri(ip) = 1; A(:,ip) = prepad (rresidue (ri, p, [], toler), border+1, 0).'; endfor ## Solve for the residues. r = A \ B; endfunction function [pnum, pden, e] = rresidue (r, p, k, toler, e) ## Reconstitute the numerator and denominator polynomials from the ## residues, poles, and direct term. if (nargin < 2 || nargin > 5) print_usage (); endif if (nargin < 5) e = []; endif if (nargin < 4) toler = []; endif if (nargin < 3) k = []; endif if (numel (e)) indx = 1:numel (p); else [e, indx] = mpoles (p, toler, 0); p = p (indx); r = r (indx); endif indx = 1:numel (p); for n = indx pn = [1, -p(n)]; if (n == 1) pden = pn; else pden = conv (pden, pn); endif endfor ## D is the order of the denominator ## K is the order of the direct polynomial ## N is the order of the resulting numerator ## pnum(1:(N+1)) is the numerator's polynomial ## pden(1:(D+1)) is the denominator's polynomial ## pm is the multible pole for the nth residue ## pn is the numerator contribution for the nth residue D = numel (pden) - 1; K = numel (k) - 1; N = K + D; pnum = zeros (1, N+1); for n = indx(abs (r) > 0) p1 = [1, -p(n)]; for m = 1:e(n) if (m == 1) pm = p1; else pm = conv (pm, p1); endif endfor pn = deconv (pden, pm); pn = r(n) * pn; pnum = pnum + prepad (pn, N+1, 0, 2); endfor ## Add the direct term. if (numel (k)) pnum = pnum + conv (pden, k); endif ## Check for leading zeros and trim the polynomial coefficients. if (isa (r, "single") || isa (p, "single") || isa (k, "single")) small = max ([max(abs(pden)), max(abs(pnum)), 1]) * eps ("single"); else small = max ([max(abs(pden)), max(abs(pnum)), 1]) * eps; endif pnum(abs (pnum) < small) = 0; pden(abs (pden) < small) = 0; pnum = polyreduce (pnum); pden = polyreduce (pden); endfunction %!test %! b = [1, 1, 1]; %! a = [1, -5, 8, -4]; %! [r, p, k, e] = residue (b, a); %! assert (r, [-2; 7; 3], 1e-12); %! assert (p, [2; 2; 1], 1e-12); %! assert (isempty (k)); %! assert (e, [1; 2; 1]); %! k = [1 0]; %! b = conv (k, a) + prepad (b, numel (k) + numel (a) - 1, 0); %! a = a; %! [br, ar] = residue (r, p, k); %! assert (br, b, 1e-12); %! assert (ar, a, 1e-12); %! [br, ar] = residue (r, p, k, e); %! assert (br, b, 1e-12); %! assert (ar, a, 1e-12); %!test %! b = [1, 0, 1]; %! a = [1, 0, 18, 0, 81]; %! [r, p, k, e] = residue (b, a); %! r1 = [-5i; 12; +5i; 12]/54; %! p1 = [+3i; +3i; -3i; -3i]; %! assert (r, r1, 1e-12); %! assert (p, p1, 1e-12); %! assert (isempty (k)); %! assert (e, [1; 2; 1; 2]); %! [br, ar] = residue (r, p, k); %! assert (br, b, 1e-12); %! assert (ar, a, 1e-12); %!test %! r = [7; 3; -2]; %! p = [2; 1; 2]; %! k = [1 0]; %! e = [2; 1; 1]; %! [b, a] = residue (r, p, k, e); %! assert (b, [1, -5, 9, -3, 1], 1e-12); %! assert (a, [1, -5, 8, -4], 1e-12); %! [rr, pr, kr, er] = residue (b, a); %! [jnk, n] = mpoles (p); %! assert (rr, r(n), 1e-12); %! assert (pr, p(n), 1e-12); %! assert (kr, k, 1e-12); %! assert (er, e(n), 1e-12); %!test %! b = [1]; %! a = [1, 10, 25]; %! [r, p, k, e] = residue (b, a); %! r1 = [0; 1]; %! p1 = [-5; -5]; %! assert (r, r1, 1e-12); %! assert (p, p1, 1e-12); %! assert (isempty (k)); %! assert (e, [1; 2]); %! [br, ar] = residue (r, p, k); %! assert (br, b, 1e-12); %! assert (ar, a, 1e-12); ## The following test is due to Bernard Grung (bug #34266) %!xtest %! z1 = 7.0372976777e6; %! p1 = -3.1415926536e9; %! p2 = -4.9964813512e8; %! r1 = -(1 + z1/p1)/(1 - p1/p2)/p2/p1; %! r2 = -(1 + z1/p2)/(1 - p2/p1)/p2/p1; %! r3 = (1 + (p2 + p1)/p2/p1*z1)/p2/p1; %! r4 = z1/p2/p1; %! r = [r1; r2; r3; r4]; %! p = [p1; p2; 0; 0]; %! k = []; %! e = [1; 1; 1; 2]; %! b = [1, z1]; %! a = [1, -(p1 + p2), p1*p2, 0, 0]; %! [br, ar] = residue (r, p, k, e); %! assert (br, b, 1e-8); %! assert (ar, a, 1e-8);