Mercurial > hg > octave-lyh
view scripts/special-matrix/invhilb.m @ 17420:95bfa04ab514
Fix bug in colorbar demo #24.
set() is broken from deep within listener hierarchy. Workaround it.
* scripts/plot/colorbar.m(update_colorbar_clim): Set axis limits in listener
and then jiggle the axis position to force a redraw.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 11 Sep 2013 16:05:40 -0700 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 1993-2012 Dirk Laurie ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} invhilb (@var{n}) ## Return the inverse of the Hilbert matrix of order @var{n}. This can be ## computed exactly using ## @tex ## $$\eqalign{ ## A_{ij} &= -1^{i+j} (i+j-1) ## \left( \matrix{n+i-1 \cr n-j } \right) ## \left( \matrix{n+j-1 \cr n-i } \right) ## \left( \matrix{i+j-2 \cr i-2 } \right)^2 \cr ## &= { p(i)p(j) \over (i+j-1) } ## }$$ ## where ## $$ ## p(k) = -1^k \left( \matrix{ k+n-1 \cr k-1 } \right) ## \left( \matrix{ n \cr k } \right) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## ## (i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2 ## A(i,j) = -1 (i+j-1)( )( ) ( ) ## \ n-j / \ n-i / \ i-2 / ## ## = p(i) p(j) / (i+j-1) ## ## @end group ## @end example ## ## @noindent ## where ## ## @example ## @group ## k /k+n-1\ /n\ ## p(k) = -1 ( ) ( ) ## \ k-1 / \k/ ## @end group ## @end example ## ## @end ifnottex ## The validity of this formula can easily be checked by expanding ## the binomial coefficients in both formulas as factorials. It can ## be derived more directly via the theory of Cauchy matrices. ## See J. W. Demmel, @cite{Applied Numerical Linear Algebra}, p. 92. ## ## Compare this with the numerical calculation of @code{inverse (hilb (n))}, ## which suffers from the ill-conditioning of the Hilbert matrix, and the ## finite precision of your computer's floating point arithmetic. ## @seealso{hilb} ## @end deftypefn ## Author: Dirk Laurie <dlaurie@na-net.ornl.gov> function retval = invhilb (n) if (nargin != 1) print_usage (); elseif (! isscalar (n)) error ("invhilb: N must be a scalar integer"); endif ## The point about the second formula above is that when vectorized, ## p(k) is evaluated for k=1:n which involves O(n) calls to bincoeff ## instead of O(n^2). ## ## We evaluate the expression as (-1)^(i+j)*(p(i)*p(j))/(i+j-1) except ## when p(i)*p(j) would overflow. In cases where p(i)*p(j) is an exact ## machine number, the result is also exact. Otherwise we calculate ## (-1)^(i+j)*p(i)*(p(j)/(i+j-1)). ## ## The Octave bincoeff routine uses transcendental functions (gammaln ## and exp) rather than multiplications, for the sake of speed. ## However, it rounds the answer to the nearest integer, which ## justifies the claim about exactness made above. retval = zeros (n); k = [1:n]; p = k .* bincoeff (k+n-1, k-1) .* bincoeff (n, k); p(2:2:n) = -p(2:2:n); if (n < 203) for l = 1:n retval(l,:) = (p(l) * p) ./ [l:l+n-1]; endfor else for l = 1:n retval(l,:) = p(l) * (p ./ [l:l+n-1]); endfor endif endfunction %!assert (invhilb (1), 1) %!assert (invhilb (2), [4, -6; -6, 12]) %!test %! result4 = [16 , -120 , 240 , -140; %! -120, 1200 , -2700, 1680; %! 240 , -2700, 6480 , -4200; %! -140, 1680 , -4200, 2800]; %! assert (invhilb (4), result4); %!assert (invhilb (7) * hilb (7), eye (7), sqrt (eps)) %!error invhilb () %!error invhilb (1, 2) %!error <N must be a scalar integer> invhilb ([1, 2])