Mercurial > hg > octave-lyh
view src/pt-mat.cc @ 5210:996a08a3eb06 ss-2-9-0
[project @ 2005-03-15 20:46:03 by jwe]
author | jwe |
---|---|
date | Tue, 15 Mar 2005 20:46:03 +0000 |
parents | 57077d0ddc8e |
children | 23b37da9fd5b |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "defun.h" #include "error.h" #include "oct-obj.h" #include "pt-arg-list.h" #include "pt-bp.h" #include "pt-exp.h" #include "pt-mat.h" #include "pt-walk.h" #include "utils.h" #include "ov.h" #include "variables.h" // If TRUE, print a warning message for empty elements in a matrix list. static bool Vwarn_empty_list_elements; // The character to fill with when creating string arrays. char Vstring_fill_char = ' '; // General matrices. This list type is much more work to handle than // constant matrices, but it allows us to construct matrices from // other matrices, variables, and functions. // But first, some internal classes that make our job much easier. class tm_row_const { private: class tm_row_const_rep : public octave_base_list<octave_value> { public: tm_row_const_rep (void) : count (1), dv (), all_str (false), some_str (false), is_cmplx (false), all_mt (true), ok (false) { } tm_row_const_rep (const tree_argument_list& row) : count (1), dv (), all_str (false), some_str (false), is_cmplx (false), all_mt (true), ok (false) { init (row); } ~tm_row_const_rep (void) { } int count; dim_vector dv; bool all_str; bool some_str; bool is_cmplx; bool all_mt; bool ok; bool do_init_element (tree_expression *, const octave_value&, bool&); void init (const tree_argument_list&); private: tm_row_const_rep (const tm_row_const_rep&); tm_row_const_rep& operator = (const tm_row_const_rep&); void eval_error (const char *msg, int l, int c, int x = -1, int y = -1) const; void eval_warning (const char *msg, int l, int c) const; }; public: typedef tm_row_const_rep::iterator iterator; typedef tm_row_const_rep::const_iterator const_iterator; tm_row_const (void) : rep (0) { } tm_row_const (const tree_argument_list& row) : rep (new tm_row_const_rep (row)) { } tm_row_const (const tm_row_const& x) : rep (x.rep) { if (rep) rep->count++; } tm_row_const& operator = (const tm_row_const& x) { if (this != &x && rep != x.rep) { if (rep && --rep->count == 0) delete rep; rep = x.rep; if (rep) rep->count++; } return *this; } ~tm_row_const (void) { if (rep && --rep->count == 0) delete rep; } int rows (void) { return (rep->dv.length () > 0 ? rep->dv(0) : 0); } int cols (void) { return (rep->dv.length () > 1 ? rep->dv(1) : 0); } dim_vector dims (void) { return rep->dv; } bool all_strings_p (void) const { return rep->all_str; } bool some_strings_p (void) const { return rep->some_str; } bool complex_p (void) const { return rep->is_cmplx; } bool all_empty_p (void) const { return rep->all_mt; } operator bool () const { return (rep && rep->ok); } iterator begin (void) { return rep->begin (); } const_iterator begin (void) const { return rep->begin (); } iterator end (void) { return rep->end (); } const_iterator end (void) const { return rep->end (); } private: tm_row_const_rep *rep; }; bool tm_row_const::tm_row_const_rep::do_init_element (tree_expression *elt, const octave_value& val, bool& first_elem) { int this_elt_nr = val.rows (); int this_elt_nc = val.columns (); dim_vector this_elt_dv = val.dims (); if (!this_elt_dv.all_zero ()) { all_mt = false; if (first_elem) { first_elem = false; dv.resize (this_elt_dv.length ()); for (int i = 2; i < dv.length (); i++) dv.elem (i) = this_elt_dv.elem (i); dv.elem (0) = this_elt_nr; dv.elem (1) = 0; } else { int len = (this_elt_dv.length () < dv.length () ? this_elt_dv.length () : dv.length ()); if (this_elt_nr != dv (0)) { eval_error ("number of rows must match", elt->line (), elt->column (), this_elt_nr, dv (0)); return false; } for (int i = 2; i < len; i++) { if (this_elt_dv (i) != dv (i)) { eval_error ("dimensions mismatch", elt->line (), elt->column (), this_elt_dv (i), dv (i)); return false; } } if (this_elt_dv.length () > len) for (int i = len; i < this_elt_dv.length (); i++) if (this_elt_dv (i) != 1) { eval_error ("dimensions mismatch", elt->line (), elt->column (), this_elt_dv (i), 1); return false; } if (dv.length () > len) for (int i = len; i < dv.length (); i++) if (dv (i) != 1) { eval_error ("dimensions mismatch", elt->line (), elt->column (), 1, dv (i)); return false; } } dv.elem (1) = dv.elem (1) + this_elt_nc; } else if (Vwarn_empty_list_elements) eval_warning ("empty matrix found in matrix list", elt->line (), elt->column ()); append (val); if (all_str && ! val.is_string ()) all_str = false; if (! some_str && val.is_string ()) some_str = true; if (! is_cmplx && val.is_complex_type ()) is_cmplx = true; return true; } void tm_row_const::tm_row_const_rep::init (const tree_argument_list& row) { all_str = true; bool first_elem = true; for (tree_argument_list::const_iterator p = row.begin (); p != row.end (); p++) { tree_expression *elt = *p; octave_value tmp = elt->rvalue (); if (error_state || tmp.is_undefined ()) break; else { if (tmp.is_cs_list ()) { octave_value_list tlst = tmp.list_value (); for (int i = 0; i < tlst.length (); i++) { if (! do_init_element (elt, tlst(i), first_elem)) goto done; } } else { if (! do_init_element (elt, tmp, first_elem)) goto done; } } } done: ok = ! error_state; } void tm_row_const::tm_row_const_rep::eval_error (const char *msg, int l, int c, int x, int y) const { if (l == -1 && c == -1) { if (x == -1 || y == -1) ::error ("%s", msg); else ::error ("%s (%d != %d)", msg, x, y); } else { if (x == -1 || y == -1) ::error ("%s near line %d, column %d", msg, l, c); else ::error ("%s (%d != %d) near line %d, column %d", msg, x, y, l, c); } } void tm_row_const::tm_row_const_rep::eval_warning (const char *msg, int l, int c) const { if (l == -1 && c == -1) ::warning ("%s", msg); else ::warning ("%s near line %d, column %d", msg, l, c); } class tm_const : public octave_base_list<tm_row_const> { public: tm_const (const tree_matrix& tm) : dv (), all_str (false), some_str (false), is_cmplx (false), all_mt (true), ok (false) { init (tm); } ~tm_const (void) { } int rows (void) const { return (dv.length () > 0 ? dv.elem (0) : 0); } int cols (void) const { return (dv.length () > 1 ? dv.elem (1) : 0); } dim_vector dims (void) const { return dv; } bool all_strings_p (void) const { return all_str; } bool some_strings_p (void) const { return some_str; } bool complex_p (void) const { return is_cmplx; } bool all_empty_p (void) const { return all_mt; } operator bool () const { return ok; } private: dim_vector dv; bool all_str; bool some_str; bool is_cmplx; bool all_mt; bool ok; tm_const (void); tm_const (const tm_const&); tm_const& operator = (const tm_const&); void init (const tree_matrix& tm); }; void tm_const::init (const tree_matrix& tm) { all_str = true; bool first_elem = true; // Just eval and figure out if what we have is complex or all // strings. We can't check columns until we know that this is a // numeric matrix -- collections of strings can have elements of // different lengths. for (tree_matrix::const_iterator p = tm.begin (); p != tm.end (); p++) { tree_argument_list *elt = *p; tm_row_const tmp (*elt); if (tmp) { if (all_str && ! tmp.all_strings_p ()) all_str = false; if (! some_str && tmp.some_strings_p ()) some_str = true; if (! is_cmplx && tmp.complex_p ()) is_cmplx = true; if (all_mt && ! tmp.all_empty_p ()) all_mt = false; append (tmp); } else break; } if (! error_state) { for (iterator p = begin (); p != end (); p++) { tm_row_const elt = *p; int this_elt_nr = elt.rows (); int this_elt_nc = elt.cols (); dim_vector this_elt_dv = elt.dims (); if (!this_elt_dv.all_zero ()) { all_mt = false; if (first_elem) { first_elem = false; dv.resize (this_elt_dv.length ()); for (int i = 2; i < dv.length (); i++) dv.elem (i) = this_elt_dv.elem (i); dv.elem (0) = 0; dv.elem (1) = this_elt_nc; } else if (all_str) { if (this_elt_nc > cols ()) dv.elem (1) = this_elt_nc; } else { bool get_out = false; int len = (this_elt_dv.length () < dv.length () ? this_elt_dv.length () : dv.length ()); for (int i = 1; i < len; i++) { if (i == 1 && this_elt_nc != dv (1)) { ::error ("number of columns must match (%d != %d)", this_elt_nc, dv (1)); get_out = true; break; } else if (this_elt_dv (i) != dv (i)) { ::error ("dimensions mismatch (dim = %i, %d != %d)", i+1, this_elt_dv (i), dv (i)); get_out = true; break; } } if (this_elt_dv.length () > len) for (int i = len; i < this_elt_dv.length (); i++) if (this_elt_dv (i) != 1) { ::error ("dimensions mismatch (dim = %i, %d != %d)", i+1, this_elt_dv (i), 1); get_out = true; break; } if (dv.length () > len) for (int i = len; i < dv.length (); i++) if (dv (i) != 1) { ::error ("dimensions mismatch (dim = %i, %d != %d)", i+1, 1, dv(i)); get_out = true; break; } if (get_out) break; } dv.elem (0) = dv.elem (0) + this_elt_nr; } else if (Vwarn_empty_list_elements) warning ("empty matrix found in matrix list"); } } ok = ! error_state; } tree_matrix::~tree_matrix (void) { while (! empty ()) { iterator p = begin (); delete *p; erase (p); } } bool tree_matrix::has_magic_end (void) const { for (const_iterator p = begin (); p != end (); p++) { tree_argument_list *elt = *p; if (elt && elt->has_magic_end ()) return true; } return false; } bool tree_matrix::all_elements_are_constant (void) const { for (const_iterator p = begin (); p != end (); p++) { tree_argument_list *elt = *p; if (! elt->all_elements_are_constant ()) return false; } return true; } octave_value_list tree_matrix::rvalue (int nargout) { octave_value_list retval; MAYBE_DO_BREAKPOINT; if (nargout > 1) error ("invalid number of output arguments for matrix list"); else retval = rvalue (); return retval; } octave_value tree_matrix::rvalue (void) { octave_value retval; bool all_strings_p = false; bool all_empty_p = false; bool frc_str_conv = false; tm_const tmp (*this); if (tmp) { dim_vector dv = tmp.dims (); all_strings_p = tmp.all_strings_p (); all_empty_p = tmp.all_empty_p (); frc_str_conv = tmp.some_strings_p (); // XXX FIXME XX // The previous version of this code obtained the return type and // initialized an array of the correct type. However the return type // is now built-up from the return types of do_cat_op. Should we special // case the situation where there are only NDArray and ComplexNDArray // elements, or things like boolMatrix that widen to them, and do the // correct initialization? How to do this? Will it be faster? Check against // version 2.1.57 // The line below might seem crazy, since we take a copy // of the first argument, resize it to be empty and then resize // it to be full. This is done since it means that there is no // recopying of data, as would happen if we used a single resize. // It should be noted that resize operation is also significantly // slower than the do_cat_op function, so it makes sense to have an // empty matrix and copy all data. // // We might also start with a empty octave_value using // ctmp = octave_value_typeinfo::lookup_type // (tmp.begin() -> begin() -> type_name()); // and then directly resize. However, for some types there might be // some additional setup needed, and so this should be avoided. octave_value ctmp; if (all_strings_p) if (all_empty_p) ctmp = octave_value (charNDArray (), true); else ctmp = octave_value (charNDArray (dv, Vstring_fill_char), true); else { // Find the first non-empty object for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { tm_row_const row = *p; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) { ctmp = *q; if (! ctmp.all_zero_dims ()) goto found_non_empty; } } ctmp = (*(tmp.begin() -> begin())); found_non_empty: if (! all_empty_p) ctmp = ctmp.resize (dim_vector (0,0)).resize (dv); } if (error_state) goto done; // Now, extract the values from the individual elements and // insert them in the result matrix. int dv_len = dv.length (); Array<int> ra_idx (dv_len > 1 ? dv_len : 2, 0); for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { tm_row_const row = *p; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) { octave_value elt = *q; ctmp = do_cat_op (ctmp, elt, ra_idx); if (error_state) goto done; ra_idx (1) += elt.columns (); } ra_idx (0) += row.rows (); ra_idx (1) = 0; } retval = ctmp; if (frc_str_conv && ! retval.is_string ()) retval = retval.convert_to_str (); } done: return retval; } void tree_matrix::accept (tree_walker& tw) { tw.visit_matrix (*this); } static int warn_empty_list_elements (void) { Vwarn_empty_list_elements = check_preference ("warn_empty_list_elements"); return 0; } static int string_fill_char (void) { int status = 0; std::string s = builtin_string_variable ("string_fill_char"); switch (s.length ()) { case 1: Vstring_fill_char = s[0]; break; case 0: Vstring_fill_char = '\0'; break; default: warning ("string_fill_char must be a single character"); status = -1; break; } return status; } void symbols_of_pt_mat (void) { DEFVAR (string_fill_char, " ", string_fill_char, "-*- texinfo -*-\n\ @defvr {Built-in Variable} string_fill_char\n\ The value of this variable is used to pad all strings in a string matrix\n\ to the same length. It should be a single character. The default value\n\ is @code{\" \"} (a single space). For example,\n\ \n\ @example\n\ @group\n\ string_fill_char = \"X\";\n\ [ \"these\"; \"are\"; \"strings\" ]\n\ @result{} \"theseXX\"\n\ \"areXXXX\"\n\ \"strings\"\n\ @end group\n\ @end example\n\ @end defvr"); DEFVAR (warn_empty_list_elements, false, warn_empty_list_elements, "-*- texinfo -*-\n\ @defvr {Built-in Variable} warn_empty_list_elements\n\ If the value of @code{warn_empty_list_elements} is nonzero, print a\n\ warning when an empty matrix is found in a matrix list. For example,\n\ \n\ @example\n\ a = [1, [], 3, [], 5]\n\ @end example\n\ \n\ @noindent\n\ The default value is 0.\n\ @end defvr"); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */