Mercurial > hg > octave-lyh
view src/sparse-xdiv.cc @ 5210:996a08a3eb06 ss-2-9-0
[project @ 2005-03-15 20:46:03 by jwe]
author | jwe |
---|---|
date | Tue, 15 Mar 2005 20:46:03 +0000 |
parents | 57077d0ddc8e |
children | 23b37da9fd5b |
line wrap: on
line source
/* Copyright (C) 2004 David Bateman Copyright (C) 1998-2004 Andy Adler Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include "Array-util.h" #include "oct-cmplx.h" #include "quit.h" #include "error.h" #include "dSparse.h" #include "CSparse.h" #include "oct-spparms.h" #include "sparse-xdiv.h" static inline bool result_ok (int info) { #ifdef HAVE_LSSOLVE return (info != -2 && info != -1); #else // If the matrix is singular, who cares as we don't have QR based solver yet return (info != -1); #endif } static void solve_singularity_warning (double rcond) { warning ("matrix singular to machine precision, rcond = %g", rcond); warning ("attempting to find minimum norm solution"); } template <class T1, class T2> bool mx_leftdiv_conform (const T1& a, const T2& b) { int a_nr = a.rows (); int b_nr = b.rows (); if (a_nr != b_nr) { int a_nc = a.cols (); int b_nc = b.cols (); gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \ template bool mx_leftdiv_conform (const T1&, const T2&) INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, ComplexMatrix); template <class T1, class T2> bool mx_div_conform (const T1& a, const T2& b) { int a_nc = a.cols (); int b_nc = b.cols (); if (a_nc != b_nc) { int a_nr = a.rows (); int b_nr = b.rows (); gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \ template bool mx_div_conform (const T1&, const T2&) INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseComplexMatrix); // Right division functions. // // op2 / op1: m cm sm scm // +-- +---+----+----+----+ // sparse matrix | 1 | 3 | 5 | 7 | // +---+----+----+----+ // sparse complex_matrix | 2 | 4 | 6 | 8 | // +---+----+----+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const SparseMatrix& b) { if (! mx_div_conform (a, b)) return Matrix (); Matrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; Matrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return Matrix (result.transpose ()); } int rank; Matrix result = btmp.lssolve (atmp, info, rank); return result.transpose (); } // -*- 2 -*- ComplexMatrix xdiv (const Matrix& a, const SparseComplexMatrix& b) { if (! mx_div_conform (a, b)) return ComplexMatrix (); Matrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; ComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; ComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseMatrix& b) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; ComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; ComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // -*- 4 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseComplexMatrix& b) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; ComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; ComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // -*- 5 -*- SparseMatrix xdiv (const SparseMatrix& a, const SparseMatrix& b) { if (! mx_div_conform (a, b)) return SparseMatrix (); SparseMatrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; SparseMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return SparseMatrix (result.transpose ()); } int rank; SparseMatrix result = btmp.lssolve (atmp, info, rank); return result.transpose (); } // -*- 6 -*- SparseComplexMatrix xdiv (const SparseMatrix& a, const SparseComplexMatrix& b) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseMatrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; SparseComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; SparseComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // -*- 7 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseMatrix& b) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; SparseComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; SparseComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // -*- 8 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); int info; if (btmp.rows () == btmp.columns ()) { double rcond = 0.0; SparseComplexMatrix result = btmp.solve (atmp, info, rcond, solve_singularity_warning); if (result_ok (info)) return result.hermitian (); } int rank; SparseComplexMatrix result = btmp.lssolve (atmp, info, rank); return result.hermitian (); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ Matrix x_el_div (double a, const SparseMatrix& b) { int nr = b.rows (); int nc = b.cols (); Matrix result; if (a == 0.) result = Matrix (nr, nc, octave_NaN); else if (a > 0.) result = Matrix (nr, nc, octave_Inf); else result = Matrix (nr, nc, -octave_Inf); for (int j = 0; j < nc; j++) for (int i = b.cidx(j); i < b.cidx(j+1); i++) { OCTAVE_QUIT; result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (double a, const SparseComplexMatrix& b) { int nr = b.rows (); int nc = b.cols (); ComplexMatrix result (nr, nc, Complex(octave_NaN, octave_NaN)); for (int j = 0; j < nc; j++) for (int i = b.cidx(j); i < b.cidx(j+1); i++) { OCTAVE_QUIT; result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseMatrix& b) { int nr = b.rows (); int nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (int j = 0; j < nc; j++) for (int i = b.cidx(j); i < b.cidx(j+1); i++) { OCTAVE_QUIT; result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseComplexMatrix& b) { int nr = b.rows (); int nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (int j = 0; j < nc; j++) for (int i = b.cidx(j); i < b.cidx(j+1); i++) { OCTAVE_QUIT; result.elem (b.ridx(i), j) = a / b.data (i); } return result; } // Left division functions. // // op2 \ op1: m cm // +-- +---+----+ // matrix | 1 | 5 | // +---+----+ // complex_matrix | 2 | 6 | // +---+----+ // sparse matrix | 3 | 7 | // +---+----+ // sparse complex_matrix | 4 | 8 | // +---+----+ // -*- 1 -*- Matrix xleftdiv (const SparseMatrix& a, const Matrix& b) { if (! mx_leftdiv_conform (a, b)) return Matrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; Matrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 2 -*- ComplexMatrix xleftdiv (const SparseMatrix& a, const ComplexMatrix& b) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; ComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 3 -*- SparseMatrix xleftdiv (const SparseMatrix& a, const SparseMatrix& b) { if (! mx_leftdiv_conform (a, b)) return SparseMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; SparseMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 4 -*- SparseComplexMatrix xleftdiv (const SparseMatrix& a, const SparseComplexMatrix& b) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; SparseComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 5 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const Matrix& b) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; ComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 6 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const ComplexMatrix& b) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; ComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 7 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseMatrix& b) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; SparseComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } // -*- 8 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); int info; if (a.rows () == a.columns ()) { double rcond = 0.0; SparseComplexMatrix result = a.solve (b, info, rcond, solve_singularity_warning); if (result_ok (info)) return result; } int rank; return a.lssolve (b, info, rank); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */