Mercurial > hg > octave-lyh
view libinterp/corefcn/gcd.cc @ 17482:997b700b6ad4
compass.m: Add %!error input validation tests.
* scripts/plot/compass.m: Add %!error input validation tests.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 24 Sep 2013 13:17:02 -0700 |
parents | 2fc554ffbc28 |
children |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman Copyright (C) 2010 Jaroslav Hajek, Jordi GutiƩrrez Hermoso This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "dNDArray.h" #include "CNDArray.h" #include "fNDArray.h" #include "fCNDArray.h" #include "lo-mappers.h" #include "oct-binmap.h" #include "defun.h" #include "error.h" #include "oct-obj.h" static double simple_gcd (double a, double b) { if (! xisinteger (a) || ! xisinteger (b)) (*current_liboctave_error_handler) ("gcd: all values must be integers"); double aa = fabs (a); double bb = fabs (b); while (bb != 0) { double tt = fmod (aa, bb); aa = bb; bb = tt; } return aa; } // Don't use the Complex and FloatComplex typedefs because we need to // refer to the actual float precision FP in the body (and when gcc // implements template aliases from C++0x, can do a small fix here). template <typename FP> static void divide (const std::complex<FP>& a, const std::complex<FP>& b, std::complex<FP>& q, std::complex<FP>& r) { FP qr = gnulib::floor ((a/b).real () + 0.5); FP qi = gnulib::floor ((a/b).imag () + 0.5); q = std::complex<FP> (qr, qi); r = a - q*b; } template <typename FP> static std::complex<FP> simple_gcd (const std::complex<FP>& a, const std::complex<FP>& b) { if (! xisinteger (a.real ()) || ! xisinteger (a.imag ()) || ! xisinteger (b.real ()) || ! xisinteger (b.imag ())) (*current_liboctave_error_handler) ("gcd: all complex parts must be integers"); std::complex<FP> aa = a; std::complex<FP> bb = b; if (abs (aa) < abs (bb)) std::swap (aa, bb); while (abs (bb) != 0) { std::complex<FP> qq, rr; divide (aa, bb, qq, rr); aa = bb; bb = rr; } return aa; } template <class T> static octave_int<T> simple_gcd (const octave_int<T>& a, const octave_int<T>& b) { T aa = a.abs ().value (); T bb = b.abs ().value (); while (bb != 0) { T tt = aa % bb; aa = bb; bb = tt; } return aa; } static double extended_gcd (double a, double b, double& x, double& y) { if (! xisinteger (a) || ! xisinteger (b)) (*current_liboctave_error_handler) ("gcd: all values must be integers"); double aa = fabs (a); double bb = fabs (b); double xx = 0, yy = 1; double lx = 1, ly = 0; while (bb != 0) { double qq = gnulib::floor (aa / bb); double tt = fmod (aa, bb); aa = bb; bb = tt; double tx = lx - qq*xx; lx = xx; xx = tx; double ty = ly - qq*yy; ly = yy; yy = ty; } x = a >= 0 ? lx : -lx; y = b >= 0 ? ly : -ly; return aa; } template <typename FP> static std::complex<FP> extended_gcd (const std::complex<FP>& a, const std::complex<FP>& b, std::complex<FP>& x, std::complex<FP>& y) { if (! xisinteger (a.real ()) || ! xisinteger (a.imag ()) || ! xisinteger (b.real ()) || ! xisinteger (b.imag ())) (*current_liboctave_error_handler) ("gcd: all complex parts must be integers"); std::complex<FP> aa = a, bb = b; bool swapped = false; if (abs (aa) < abs (bb)) { std::swap (aa, bb); swapped = true; } std::complex<FP> xx = 0, lx = 1; std::complex<FP> yy = 1, ly = 0; while (abs(bb) != 0) { std::complex<FP> qq, rr; divide (aa, bb, qq, rr); aa = bb; bb = rr; std::complex<FP> tx = lx - qq*xx; lx = xx; xx = tx; std::complex<FP> ty = ly - qq*yy; ly = yy; yy = ty; } x = lx; y = ly; if (swapped) std::swap (x, y); return aa; } template <class T> static octave_int<T> extended_gcd (const octave_int<T>& a, const octave_int<T>& b, octave_int<T>& x, octave_int<T>& y) { T aa = a.abs ().value (); T bb = b.abs ().value (); T xx = 0, lx = 1; T yy = 1, ly = 0; while (bb != 0) { T qq = aa / bb; T tt = aa % bb; aa = bb; bb = tt; T tx = lx - qq*xx; lx = xx; xx = tx; T ty = ly - qq*yy; ly = yy; yy = ty; } x = octave_int<T> (lx) * a.signum (); y = octave_int<T> (ly) * b.signum (); return aa; } template<class NDA> static octave_value do_simple_gcd (const octave_value& a, const octave_value& b) { typedef typename NDA::element_type T; octave_value retval; if (a.is_scalar_type () && b.is_scalar_type ()) { // Optimize scalar case. T aa = octave_value_extract<T> (a); T bb = octave_value_extract<T> (b); retval = simple_gcd (aa, bb); } else { NDA aa = octave_value_extract<NDA> (a); NDA bb = octave_value_extract<NDA> (b); retval = binmap<T> (aa, bb, simple_gcd, "gcd"); } return retval; } // Dispatcher static octave_value do_simple_gcd (const octave_value& a, const octave_value& b) { octave_value retval; builtin_type_t btyp = btyp_mixed_numeric (a.builtin_type (), b.builtin_type ()); switch (btyp) { case btyp_double: if (a.is_sparse_type () && b.is_sparse_type ()) { retval = do_simple_gcd<SparseMatrix> (a, b); break; } // fall through! case btyp_float: retval = do_simple_gcd<NDArray> (a, b); break; #define MAKE_INT_BRANCH(X) \ case btyp_ ## X: \ retval = do_simple_gcd<X ## NDArray> (a, b); \ break MAKE_INT_BRANCH (int8); MAKE_INT_BRANCH (int16); MAKE_INT_BRANCH (int32); MAKE_INT_BRANCH (int64); MAKE_INT_BRANCH (uint8); MAKE_INT_BRANCH (uint16); MAKE_INT_BRANCH (uint32); MAKE_INT_BRANCH (uint64); #undef MAKE_INT_BRANCH case btyp_complex: retval = do_simple_gcd<ComplexNDArray> (a, b); break; case btyp_float_complex: retval = do_simple_gcd<FloatComplexNDArray> (a, b); break; default: error ("gcd: invalid class combination for gcd: %s and %s\n", a.class_name ().c_str (), b.class_name ().c_str ()); } if (btyp == btyp_float) retval = retval.float_array_value (); return retval; } template<class NDA> static octave_value do_extended_gcd (const octave_value& a, const octave_value& b, octave_value& x, octave_value& y) { typedef typename NDA::element_type T; octave_value retval; if (a.is_scalar_type () && b.is_scalar_type ()) { // Optimize scalar case. T aa = octave_value_extract<T> (a); T bb = octave_value_extract<T> (b); T xx, yy; retval = extended_gcd (aa, bb, xx, yy); x = xx; y = yy; } else { NDA aa = octave_value_extract<NDA> (a); NDA bb = octave_value_extract<NDA> (b); dim_vector dv = aa.dims (); if (aa.numel () == 1) dv = bb.dims (); else if (bb.numel () != 1 && bb.dims () != dv) gripe_nonconformant ("gcd", a.dims (), b.dims ()); NDA gg (dv), xx (dv), yy (dv); const T *aptr = aa.fortran_vec (); const T *bptr = bb.fortran_vec (); bool inca = aa.numel () != 1; bool incb = bb.numel () != 1; T *gptr = gg.fortran_vec (); T *xptr = xx.fortran_vec (), *yptr = yy.fortran_vec (); octave_idx_type n = gg.numel (); for (octave_idx_type i = 0; i < n; i++) { octave_quit (); *gptr++ = extended_gcd (*aptr, *bptr, *xptr++, *yptr++); aptr += inca; bptr += incb; } x = xx; y = yy; retval = gg; } return retval; } // Dispatcher static octave_value do_extended_gcd (const octave_value& a, const octave_value& b, octave_value& x, octave_value& y) { octave_value retval; builtin_type_t btyp = btyp_mixed_numeric (a.builtin_type (), b.builtin_type ()); switch (btyp) { case btyp_double: case btyp_float: retval = do_extended_gcd<NDArray> (a, b, x, y); break; #define MAKE_INT_BRANCH(X) \ case btyp_ ## X: \ retval = do_extended_gcd<X ## NDArray> (a, b, x, y); \ break MAKE_INT_BRANCH (int8); MAKE_INT_BRANCH (int16); MAKE_INT_BRANCH (int32); MAKE_INT_BRANCH (int64); MAKE_INT_BRANCH (uint8); MAKE_INT_BRANCH (uint16); MAKE_INT_BRANCH (uint32); MAKE_INT_BRANCH (uint64); #undef MAKE_INT_BRANCH case btyp_complex: retval = do_extended_gcd<ComplexNDArray> (a, b, x, y); break; case btyp_float_complex: retval = do_extended_gcd<FloatComplexNDArray> (a, b, x, y); break; default: error ("gcd: invalid class combination for gcd: %s and %s\n", a.class_name ().c_str (), b.class_name ().c_str ()); } // For consistency. if (! error_state && a.is_sparse_type () && b.is_sparse_type ()) { retval = retval.sparse_matrix_value (); x = x.sparse_matrix_value (); y = y.sparse_matrix_value (); } if (btyp == btyp_float) { retval = retval.float_array_value (); x = x.float_array_value (); y = y.float_array_value (); } return retval; } DEFUN (gcd, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{g} =} gcd (@var{a1}, @var{a2}, @dots{})\n\ @deftypefnx {Built-in Function} {[@var{g}, @var{v1}, @dots{}] =} gcd (@var{a1}, @var{a2}, @dots{})\n\ \n\ Compute the greatest common divisor of @var{a1}, @var{a2}, @dots{}. If more\n\ than one argument is given all arguments must be the same size or scalar.\n\ In this case the greatest common divisor is calculated for each element\n\ individually. All elements must be ordinary or Gaussian (complex)\n\ integers. Note that for Gaussian integers, the gcd is not unique up to\n\ units (multiplication by 1, -1, @var{i} or -@var{i}), so an arbitrary\n\ greatest common divisor amongst four possible is returned.\n\ \n\ Example code:\n\ \n\ @example\n\ @group\n\ gcd ([15, 9], [20, 18])\n\ @result{} 5 9\n\ @end group\n\ @end example\n\ \n\ Optional return arguments @var{v1}, etc., contain integer vectors such\n\ that,\n\ \n\ @tex\n\ $g = v_1 a_1 + v_2 a_2 + \\cdots$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @dots{}\n\ @end example\n\ \n\ @end ifnottex\n\ \n\ @seealso{lcm, factor}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin > 1) { if (nargout > 1) { retval.resize (nargin + 1); retval(0) = do_extended_gcd (args(0), args(1), retval(1), retval(2)); for (int j = 2; j < nargin; j++) { octave_value x; retval(0) = do_extended_gcd (retval(0), args(j), x, retval(j+1)); for (int i = 0; i < j; i++) retval(i+1).assign (octave_value::op_el_mul_eq, x); if (error_state) break; } } else { retval(0) = do_simple_gcd (args(0), args(1)); for (int j = 2; j < nargin; j++) { retval(0) = do_simple_gcd (retval(0), args(j)); if (error_state) break; } } } else print_usage (); return retval; } /* %!assert (gcd (200, 300, 50, 35), 5) %!assert (gcd (int16 (200), int16 (300), int16 (50), int16 (35)), int16 (5)) %!assert (gcd (uint64 (200), uint64 (300), uint64 (50), uint64 (35)), uint64 (5)) %!assert (gcd (18-i, -29+3i), -3-4i) %!error gcd () %!test %! s.a = 1; %! fail ("gcd (s)"); */