Mercurial > hg > octave-lyh
view scripts/general/cumtrapz.m @ 14812:9d9eb9bac65e gui
Improved menu structure of file, edit and window menu. Removed ambiguous shortcuts, improved focus handling for operating the GUI with the keyboard. Added new shortcuts to focus subwindows directly.
* files-dockwidget: Set focus proxy to the current directory line edit.
* history-dockwidget: Set focus proxy to the inline search bar.
* file-editor: Removed and improved shortcuts.
* main-window: Added new slots for not only showing/hiding subwindows, but also for focussing them directly with Ctrl+0,1..4. Improved menu structure.
author | Jacob Dawid <jacob.dawid@googlemail.com> |
---|---|
date | Thu, 28 Jun 2012 11:04:37 +0200 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{q} =} cumtrapz (@var{y}) ## @deftypefnx {Function File} {@var{q} =} cumtrapz (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{q} =} cumtrapz (@dots{}, @var{dim}) ## ## Cumulative numerical integration of points @var{y} using the trapezoidal ## method. ## @w{@code{cumtrapz (@var{y})}} computes the cumulative integral of @var{y} ## along the first non-singleton dimension. Where @code{trapz} reports ## only the overall integral sum, @code{cumtrapz} reports the current partial ## sum value at each point of @var{y}. When the argument @var{x} is omitted ## an equally spaced @var{x} vector with unit spacing (1) is assumed. ## @code{cumtrapz (@var{x}, @var{y})} evaluates the integral with respect to ## the spacing in @var{x} and the values in @var{y}. This is useful if the ## points in @var{y} have been sampled unevenly. If the optional @var{dim} ## argument is given, operate along this dimension. ## ## If @var{x} is not specified then unit spacing will be used. To scale ## the integral to the correct value you must multiply by the actual spacing ## value (deltaX). ## @seealso{trapz, cumsum} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## ## also: June 2000 Paul Kienzle (fixes,suggestions) ## 2006-05-12 David Bateman - Modified for NDArrays function z = cumtrapz (x, y, dim) if (nargin < 1) || (nargin > 3) print_usage (); endif have_xy = have_dim = false; if (nargin == 3) have_xy = true; have_dim = true; elseif (nargin == 2) if (! size_equal (x, y) && isscalar (y)) dim = y; have_dim = true; else have_xy = true; endif endif if (have_xy) nd = ndims (y); sz = size (y); else nd = ndims (x); sz = size (x); endif if (! have_dim) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("trapz: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); idx1 = idx2 = repmat ({':'}, [nd, 1]); idx1{dim} = 2 : n; idx2{dim} = 1 : (n - 1); if (! have_xy) z = 0.5 * cumsum (x(idx1{:}) + x(idx2{:}), dim); else if (isvector (x) && !isvector (y)) if (length (x) != sz(dim)) error ("cumtrapz: length of X and length of Y along DIM must match"); endif ## Reshape vector to point along dimension DIM shape = ones (nd, 1); shape(dim) = sz(dim); x = reshape (x, shape); z = 0.5 * cumsum (bsxfun (@times, diff (x), y(idx1{:}) + y(idx2{:})), dim); else if (! size_equal (x, y)) error ("cumtrapz: X and Y must have same shape"); endif z = 0.5 * cumsum (diff (x, 1, dim) .* (y(idx1{:}) + y(idx2{:})), dim); endif endif sz(dim) = 1; z = cat (dim, zeros (sz), z); endfunction %!shared x1,x2,y %! x1 = [0,0,0;2,2,2]; %! x2 = [0,2,4;0,2,4]; %! y = [1,2,3;4,5,6]; %!assert (cumtrapz (y), [0,0,0;2.5,3.5,4.5]) %!assert (cumtrapz (x1,y), [0,0,0;5,7,9]) %!assert (cumtrapz (y,1), [0,0,0;2.5,3.5,4.5]) %!assert (cumtrapz (x1,y,1), [0,0,0;5,7,9]) %!assert (cumtrapz (y,2), [0,1.5,4;0,4.5,10]) %!assert (cumtrapz (x2,y,2), [0,3,8;0,9,20]) %% Test ND-array implementation %!shared x1,x2,y %! x1 = 1:3; %! x2 = reshape ([0,2,4;0,2,4], [1 2 3]); %! y = reshape ([1,2,3;4,5,6], [1 2 3]); %!assert (cumtrapz (y,3), reshape ([0,1.5,4;0,4.5,10],[1 2 3])) %!assert (cumtrapz (x1,y,3), reshape ([0,1.5,4;0,4.5,10],[1 2 3])) %!assert (cumtrapz (x2,y,3), reshape ([0,3,8;0,9,20],[1 2 3]))