Mercurial > hg > octave-lyh
view scripts/signal/arch_fit.m @ 14812:9d9eb9bac65e gui
Improved menu structure of file, edit and window menu. Removed ambiguous shortcuts, improved focus handling for operating the GUI with the keyboard. Added new shortcuts to focus subwindows directly.
* files-dockwidget: Set focus proxy to the current directory line edit.
* history-dockwidget: Set focus proxy to the inline search bar.
* file-editor: Removed and improved shortcuts.
* main-window: Added new slots for not only showing/hiding subwindows, but also for focussing them directly with Ctrl+0,1..4. Improved menu structure.
author | Jacob Dawid <jacob.dawid@googlemail.com> |
---|---|
date | Thu, 28 Jun 2012 11:04:37 +0200 |
parents | 72c96de7a403 |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{a}, @var{b}] =} arch_fit (@var{y}, @var{x}, @var{p}, @var{iter}, @var{gamma}, @var{a0}, @var{b0}) ## Fit an ARCH regression model to the time series @var{y} using the ## scoring algorithm in Engle's original ARCH paper. The model is ## ## @example ## @group ## y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t), ## h(t) = a(1) + a(2) * e(t-1)^2 + @dots{} + a(p+1) * e(t-p)^2 ## @end group ## @end example ## ## @noindent ## in which @math{e(t)} is @math{N(0, h(t))}, given a time-series vector ## @var{y} up to time @math{t-1} and a matrix of (ordinary) regressors ## @var{x} up to @math{t}. The order of the regression of the residual ## variance is specified by @var{p}. ## ## If invoked as @code{arch_fit (@var{y}, @var{k}, @var{p})} with a ## positive integer @var{k}, fit an ARCH(@var{k}, @var{p}) process, ## i.e., do the above with the @math{t}-th row of @var{x} given by ## ## @example ## [1, y(t-1), @dots{}, y(t-k)] ## @end example ## ## Optionally, one can specify the number of iterations @var{iter}, the ## updating factor @var{gamma}, and initial values @math{a0} and ## @math{b0} for the scoring algorithm. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Fit an ARCH regression model function [a, b] = arch_fit (y, x, p, iter, gamma, a0, b0) if ((nargin < 3) || (nargin == 6) || (nargin > 7)) print_usage (); endif if (! (isvector (y))) error ("arch_fit: Y must be a vector"); endif T = length (y); y = reshape (y, T, 1); [rx, cx] = size (x); if ((rx == 1) && (cx == 1)) x = autoreg_matrix (y, x); elseif (! (rx == T)) error ("arch_fit: either rows (X) == length (Y), or X is a scalar"); endif [T, k] = size (x); if (nargin == 7) a = a0; b = b0; e = y - x * b; else [b, v_b, e] = ols (y, x); a = [v_b, (zeros (1, p))]'; if (nargin < 5) gamma = 0.1; if (nargin < 4) iter = 50; endif endif endif esq = e.^2; Z = autoreg_matrix (esq, p); for i = 1 : iter; h = Z * a; tmp = esq ./ h.^2 - 1 ./ h; s = 1 ./ h(1:T-p); for j = 1 : p; s = s - a(j+1) * tmp(j+1:T-p+j); endfor r = 1 ./ h(1:T-p); for j = 1:p; r = r + 2 * h(j+1:T-p+j).^2 .* esq(1:T-p); endfor r = sqrt (r); X_tilde = x(1:T-p, :) .* (r * ones (1,k)); e_tilde = e(1:T-p) .*s ./ r; delta_b = inv (X_tilde' * X_tilde) * X_tilde' * e_tilde; b = b + gamma * delta_b; e = y - x * b; esq = e .^ 2; Z = autoreg_matrix (esq, p); h = Z * a; f = esq ./ h - ones(T,1); Z_tilde = Z ./ (h * ones (1, p+1)); delta_a = inv (Z_tilde' * Z_tilde) * Z_tilde' * f; a = a + gamma * delta_a; endfor endfunction