Mercurial > hg > octave-lyh
view scripts/linear-algebra/expm.m @ 11477:a02d00dd3d5f
expm.m: new tests
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Mon, 10 Jan 2011 14:50:33 -0500 |
parents | 1740012184f9 |
children | fd0a3ac60b0e |
line wrap: on
line source
## Copyright (C) 2008, 2009 Jaroslav Hajek, Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} expm (@var{A}) ## Return the exponential of a matrix, defined as the infinite Taylor ## series ## @tex ## $$ ## \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots ## $$ ## @end tex ## @ifnottex ## ## @example ## expm(A) = I + A + A^2/2! + A^3/3! + @dots{} ## @end example ## ## @end ifnottex ## The Taylor series is @emph{not} the way to compute the matrix ## exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to ## Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine ## uses Ward's diagonal Pad@'e approximation method with three step ## preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal ## Pad@'e approximations are rational polynomials of matrices ## @tex ## $D_q(A)^{-1}N_q(A)$ ## @end tex ## @ifnottex ## ## @example ## @group ## -1 ## D (A) N (A) ## @end group ## @end example ## ## @end ifnottex ## whose Taylor series matches the first ## @tex ## $2 q + 1 $ ## @end tex ## @ifnottex ## @code{2q+1} ## @end ifnottex ## terms of the Taylor series above; direct evaluation of the Taylor series ## (with the same preconditioning steps) may be desirable in lieu of the ## Pad@'e approximation when ## @tex ## $D_q(A)$ ## @end tex ## @ifnottex ## @code{Dq(A)} ## @end ifnottex ## is ill-conditioned. ## @end deftypefn function r = expm (A) if (nargin != 1) print_usage (); endif if (! ismatrix (A) || ! issquare (A)) error ("expm: A must be a square matrix"); endif if (isscalar (A)) r = exp (A); return elseif (strfind (typeinfo (A), "diagonal matrix")) r = diag (exp (diag (A))); return endif n = rows (A); ## Trace reduction. A(A == -Inf) = -realmax; trshift = trace (A) / length (A); if (trshift > 0) A -= trshift*eye (n); endif ## Balancing. [d, p, aa] = balance (A); ## FIXME: can we both permute and scale at once? Or should we rather do ## this: ## ## [d, xx, aa] = balance (A, "noperm"); ## [xx, p, aa] = balance (aa, "noscal"); [f, e] = log2 (norm (aa, "inf")); s = max (0, e); s = min (s, 1023); aa *= 2^(-s); ## Pade approximation for exp(A). c = [5.0000000000000000e-1,... 1.1666666666666667e-1,... 1.6666666666666667e-2,... 1.6025641025641026e-3,... 1.0683760683760684e-4,... 4.8562548562548563e-6,... 1.3875013875013875e-7,... 1.9270852604185938e-9]; a2 = aa^2; id = eye (n); x = (((c(8) * a2 + c(6) * id) * a2 + c(4) * id) * a2 + c(2) * id) * a2 + id; y = (((c(7) * a2 + c(5) * id) * a2 + c(3) * id) * a2 + c(1) * id) * aa; r = (x - y) \ (x + y); ## Undo scaling by repeated squaring. for k = 1:s r ^= 2; endfor ## inverse balancing. d = diag (d); r = d * r / d; r(p, p) = r; ## Inverse trace reduction. if (trshift >0) r *= exp (trshift); endif endfunction %!assert(norm(expm([1 -1;0 1]) - [e -e; 0 e]) < 1e-5); %!assert(expm([1 -1 -1;0 1 -1; 0 0 1]), [e -e -e/2; 0 e -e; 0 0 e], 1e-5); %% Test input validation %!error expm (); %!error expm (1, 2); %!error <expm: A must be a square matrix> expm([1 0;0 1; 2 2]); %!assert (expm (10), expm (10)) %!assert (full (expm (eye (3))), expm (full (eye (3)))) %!assert (full (expm (10*eye (3))), expm (full (10*eye (3))), 8*eps)