Mercurial > hg > octave-lyh
view scripts/general/interp3.m @ 16385:a1690c3e93eb
move hook_function constructor to .cc file
* hook-fcn.cc: New file. Move hook_function::hook_function definition
here from hook-fcn.h.
* libinterp/interpfcn/module.mk (INTERPFCN_SRC): Include hook-fcn.cc
in the list.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 28 Mar 2013 02:52:18 -0400 |
parents | 7d2eb4a01798 |
children | bc924baa2c4e |
line wrap: on
line source
## Copyright (C) 2007-2012 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval}) ## ## Perform 3-dimensional interpolation. Each element of the 3-dimensional ## array @var{v} represents a value at a location given by the parameters ## @var{x}, @var{y}, and @var{z}. The parameters @var{x}, @var{x}, and ## @var{z} are either 3-dimensional arrays of the same size as the array ## @var{v} in the "meshgrid" format or vectors. The parameters @var{xi}, etc. ## respect a similar format to @var{x}, etc., and they represent the points ## at which the array @var{vi} is interpolated. ## ## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be ## @code{x = 1 : size (@var{v}, 2)}, @code{y = 1 : size (@var{v}, 1)} and ## @code{z = 1 : size (@var{v}, 3)}. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interpolation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## Method is one of: ## ## @table @asis ## @item "nearest" ## Return the nearest neighbor. ## ## @item "linear" ## Linear interpolation from nearest neighbors. ## ## @item "cubic" ## Cubic interpolation from four nearest neighbors (not implemented yet). ## ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is "linear". ## ## If @var{extrap} is the string "extrap", then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NA. ## @seealso{interp1, interp2, spline, meshgrid} ## @end deftypefn function vi = interp3 (varargin) method = "linear"; extrapval = NA; nargs = nargin; if (nargin < 1 || ! isnumeric (varargin{1})) print_usage (); endif if (ischar (varargin{end})) method = varargin{end}; nargs = nargs - 1; elseif (nargs > 1 && ischar (varargin{end - 1})) if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) error ("interp3: extrapal is expected to be a numeric scalar"); endif extrapval = varargin{end}; method = varargin{end-1}; nargs = nargs - 2; endif if (nargs < 3 || (nargs == 4 && ! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))) v = varargin{1}; if (ndims (v) != 3) error ("interp3: expect 3-dimensional array of values"); endif x = varargin (2:nargs); if (any (! cellfun (@isvector, x))) for i = 2 : 3 if (! size_equal (x{1}, x{i})) error ("interp3: dimensional mismatch"); endif x{i} = permute (x{i}, [2, 1, 3]); endfor x{1} = permute (x{1}, [2, 1, 3]); endif v = permute (v, [2, 1, 3]); vi = ipermute (interpn (v, x{:}, method, extrapval), [2, 1, 3]); elseif (nargs == 7 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1) v = varargin{4}; if (ndims (v) != 3) error ("interp3: expect 3-dimensional array of values"); endif x = varargin (1:3); if (any (! cellfun (@isvector, x))) for i = 2 : 3 if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("interp3: dimensional mismatch"); endif x{i} = permute (x{i}, [2, 1, 3]); endfor x{1} = permute (x{1}, [2, 1, 3]); endif y = varargin (5:7); if (any (! cellfun (@isvector, y))) for i = 2 : 3 if (! size_equal (y{1}, y{i})) error ("interp3: dimensional mismatch"); endif y{i} = permute (y{i}, [2, 1, 3]); endfor y{1} = permute (y{1}, [2, 1, 3]); endif v = permute (v, [2, 1, 3]); vi = ipermute (interpn (x{:}, v, y{:}, method, extrapval), [2, 1, 3]); else error ("interp3: wrong number or incorrectly formatted input arguments"); endif endfunction %!test %! x = y = z = -1:1; y = y + 2; %! f = @(x,y,z) x.^2 - y - z.^2; %! [xx, yy, zz] = meshgrid (x, y, z); %! v = f (xx,yy,zz); %! xi = yi = zi = -1:0.5:1; yi = yi + 2.1; %! [xxi, yyi, zzi] = meshgrid (xi, yi, zi); %! vi = interp3 (x, y, z, v, xxi, yyi, zzi); %! [xxi, yyi, zzi] = ndgrid (yi, xi, zi); %! vi2 = interpn (y, x, z, v, xxi, yyi, zzi); %! tol = 10 * eps; %! assert (vi, vi2, tol); %!test %! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]); v(:,2,1)=[7 ;5;4]; v(:,1,2)=[2 ;3;5]; %! [xxi3, yyi3, zzi3] = meshgrid (xi, yi, zi); %! [xxi, yyi, zzi] = ndgrid (yi, xi, zi); %! vi = interp3 (x, y, z, v, xxi3, yyi3, zzi3, "nearest"); %! vi2 = interpn (y, x, z, v, xxi, yyi, zzi,"nearest"); %! assert (vi, vi2); %!test %! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]); v(:,2,1)=[7 ;5;4]; v(:,1,2)=[2 ;3;5]; %! vi = interp3 (x, y, z, v, xi+1, yi, zi, "nearest",3); %! vi2 = interpn (y, x, z, v, yi, xi+1, zi,"nearest", 3); %! assert (vi, vi2); %!test %! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]); v(:,2,1)=[7 ;5;4]; v(:,1,2)=[2 ;3;5]; %! vi = interp3 (x, y, z, v, xi, yi, zi, "nearest"); %! vi2 = interpn (y, x, z, v, yi, xi, zi,"nearest"); %! assert (vi, vi2); %!test %! x=z=1:2; y=1:3;xi=zi=.6:1.6; yi=1; v=ones([3,2,2]); v(:,2,1)=[7 ;5;4]; v(:,1,2)=[2 ;3;5]; %! vi = interp3 (v, xi, yi, zi, "nearest",3); %! vi2 = interpn (v, yi, xi, zi,"nearest", 3); %! assert (vi, vi2); %!test %! xi=zi=.6:1.6; yi=1; v=ones([3,2,2]); v(:,2,1)=[7 ;5;4]; v(:,1,2)=[2 ;3;5]; %! vi = interp3 (v, xi, yi, zi, "nearest"); %! vi2 = interpn (v, yi, xi, zi,"nearest"); %! assert (vi, vi2); %!shared z, zout, tol %! z = zeros (3, 3, 3); %! zout = zeros (5, 5, 5); %! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9]; %! z(:,:,2) = z(:,:,1) + 2; %! z(:,:,3) = z(:,:,2) + 2; %! for n = 1:5 %! zout(:,:,n) = [1 2 3 4 5; %! 2 3 4 5 6; %! 3 4 5 6 7; %! 4 5 6 7 8; %! 5 6 7 8 9] + (n-1); %! end %! tol = 10 * eps; %!assert (interp3 (z), zout, tol) %!assert (interp3 (z, "linear"), zout, tol) %!assert (interp3 (z, "spline"), zout, tol)