Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/lu.cc @ 7017:a1dbe9d80eee
[project @ 2007-10-12 21:27:11 by jwe]
author | jwe |
---|---|
date | Fri, 12 Oct 2007 21:27:37 +0000 |
parents | 93c65f2a5668 |
children | f3c00dc0912b |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1999, 2000, 2003, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxLU.h" #include "dbleLU.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (lu, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{l}, @var{u}, @var{p}] =} lu (@var{a})\n\ @cindex LU decomposition\n\ Compute the LU decomposition of @var{a}, using subroutines from\n\ @sc{Lapack}. The result is returned in a permuted form, according to\n\ the optional return value @var{p}. For example, given the matrix\n\ @code{a = [1, 2; 3, 4]},\n\ \n\ @example\n\ [l, u, p] = lu (a)\n\ @end example\n\ \n\ @noindent\n\ returns\n\ \n\ @example\n\ l =\n\ \n\ 1.00000 0.00000\n\ 0.33333 1.00000\n\ \n\ u =\n\ \n\ 3.00000 4.00000\n\ 0.00000 0.66667\n\ \n\ p =\n\ \n\ 0 1\n\ 1 0\n\ @end example\n\ \n\ The matrix is not required to be square.\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1 || nargout > 3) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("lu", nr, nc); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (3, Matrix ()); if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { LU fact (m); switch (nargout) { case 0: case 1: case 2: { Matrix P = fact.P (); Matrix L = P.transpose () * fact.L (); retval(1) = fact.U (); retval(0) = L; } break; case 3: default: retval(2) = fact.P (); retval(1) = fact.U (); retval(0) = fact.L (); break; } } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { ComplexLU fact (m); switch (nargout) { case 0: case 1: case 2: { Matrix P = fact.P (); ComplexMatrix L = P.transpose () * fact.L (); retval(1) = fact.U (); retval(0) = L; } break; case 3: default: retval(2) = fact.P (); retval(1) = fact.U (); retval(0) = fact.L (); break; } } } else { gripe_wrong_type_arg ("lu", arg); } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */