Mercurial > hg > octave-lyh
view scripts/statistics/distributions/binoinv.m @ 13803:a2e158c3451f
provide the waitbar function
* waitbar.m: New file.
* plot/module.mk (plot_FCN_FILES): Add it to the list.
* NEWS: Add waitbar to the list of new functions.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 03 Nov 2011 05:30:45 -0400 |
parents | 19b9f17d22af |
children | 0c15fece33ad |
line wrap: on
line source
## Copyright (C) 2011 Rik Wehbring ## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} binoinv (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the binomial distribution with parameters ## @var{n} and @var{p}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the binomial distribution function inv = binoinv (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar (n) || !isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("binoinv: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("binoinv: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")); inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = (!(x >= 0) | !(x <= 1) | !(n >= 0) | (n != fix (n)) | !(p >= 0) | !(p <= 1)); inv(k) = NaN; k = find ((x >= 0) & (x <= 1) & (n >= 0) & (n == fix (n) & (p >= 0) & (p <= 1))); if (any (k)) if (isscalar (n) && isscalar (p)) cdf = binopdf (0, n, p) * ones (size (k)); while (any (inv(k) < n)) m = find (cdf < x(k)); if (any (m)) inv(k(m)) = inv(k(m)) + 1; cdf(m) = cdf(m) + binopdf (inv(k(m)), n, p); else break; endif endwhile else cdf = binopdf (0, n(k), p(k)); while (any (inv(k) < n(k))) m = find (cdf < x(k)); if (any (m)) inv(k(m)) = inv(k(m)) + 1; cdf(m) = cdf(m) + binopdf (inv(k(m)), n(k(m)), p(k(m))); else break; endif endwhile endif endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert(binoinv (x, 2*ones(1,5), 0.5*ones(1,5)), [NaN 0 1 2 NaN]); %!assert(binoinv (x, 2, 0.5*ones(1,5)), [NaN 0 1 2 NaN]); %!assert(binoinv (x, 2*ones(1,5), 0.5), [NaN 0 1 2 NaN]); %!assert(binoinv (x, 2*[0 -1 NaN 1.1 1], 0.5), [NaN NaN NaN NaN NaN]); %!assert(binoinv (x, 2, 0.5*[0 -1 NaN 3 1]), [NaN NaN NaN NaN NaN]); %!assert(binoinv ([x(1:2) NaN x(4:5)], 2, 0.5), [NaN 0 NaN 2 NaN]); %% Test class of input preserved %!assert(binoinv ([x, NaN], 2, 0.5), [NaN 0 1 2 NaN NaN]); %!assert(binoinv (single([x, NaN]), 2, 0.5), single([NaN 0 1 2 NaN NaN])); %!assert(binoinv ([x, NaN], single(2), 0.5), single([NaN 0 1 2 NaN NaN])); %!assert(binoinv ([x, NaN], 2, single(0.5)), single([NaN 0 1 2 NaN NaN])); %% Test input validation %!error binoinv () %!error binoinv (1) %!error binoinv (1,2) %!error binoinv (1,2,3,4) %!error binoinv (ones(3),ones(2),ones(2)) %!error binoinv (ones(2),ones(3),ones(2)) %!error binoinv (ones(2),ones(2),ones(3)) %!error binoinv (i, 2, 2) %!error binoinv (2, i, 2) %!error binoinv (2, 2, i)