Mercurial > hg > octave-lyh
view scripts/statistics/distributions/cauchy_rnd.m @ 13803:a2e158c3451f
provide the waitbar function
* waitbar.m: New file.
* plot/module.mk (plot_FCN_FILES): Add it to the list.
* NEWS: Add waitbar to the list of new functions.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 03 Nov 2011 05:30:45 -0400 |
parents | 19b9f17d22af |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2011 Rik Wehbring ## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cauchy_rnd (@var{location}, @var{scale}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, [@var{sz}]) ## Return a matrix of random samples from the Cauchy distribution with ## parameters @var{location} and @var{scale}. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the common size of ## @var{location} and @var{scale}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the Cauchy distribution function rnd = cauchy_rnd (location, scale, varargin) if (nargin < 2) print_usage (); endif if (!isscalar (location) || !isscalar (scale)) [retval, location, scale] = common_size (location, scale); if (retval > 0) error ("cauchy_rnd: LOCATION and SCALE must be of common size or scalars"); endif endif if (iscomplex (location) || iscomplex (scale)) error ("cauchy_rnd: LOCATION and SCALE must not be complex"); endif if (nargin == 2) sz = size (location); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("cauchy_rnd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 3) if (any (cellfun (@(x) (!isscalar (x) || x < 0), varargin))) error ("cauchy_rnd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (!isscalar (location) && !isequal (size (location), sz)) error ("cauchy_rnd: LOCATION and SCALE must be scalar or of size SZ"); endif if (isa (location, "single") || isa (scale, "single")) cls = "single"; else cls = "double"; endif if (isscalar (location) && isscalar (scale)) if (!isinf (location) && (scale > 0) && (scale < Inf)) rnd = location - cot (pi * rand (sz)) * scale; else rnd = NaN (sz, cls); endif else rnd = NaN (sz, cls); k = !isinf (location) & (scale > 0) & (scale < Inf); rnd(k) = location(k)(:) - cot (pi * rand (sum (k(:)), 1)) .* scale(k)(:); endif endfunction %!assert(size (cauchy_rnd (1,2)), [1, 1]); %!assert(size (cauchy_rnd (ones(2,1), 2)), [2, 1]); %!assert(size (cauchy_rnd (ones(2,2), 2)), [2, 2]); %!assert(size (cauchy_rnd (1, 2*ones(2,1))), [2, 1]); %!assert(size (cauchy_rnd (1, 2*ones(2,2))), [2, 2]); %!assert(size (cauchy_rnd (1, 2, 3)), [3, 3]); %!assert(size (cauchy_rnd (1, 2, [4 1])), [4, 1]); %!assert(size (cauchy_rnd (1, 2, 4, 1)), [4, 1]); %% Test class of input preserved %!assert(class (cauchy_rnd (1, 2)), "double"); %!assert(class (cauchy_rnd (single(1), 2)), "single"); %!assert(class (cauchy_rnd (single([1 1]), 2)), "single"); %!assert(class (cauchy_rnd (1, single(2))), "single"); %!assert(class (cauchy_rnd (1, single([2 2]))), "single"); %% Test input validation %!error cauchy_rnd () %!error cauchy_rnd (1) %!error cauchy_rnd (ones(3),ones(2)) %!error cauchy_rnd (ones(2),ones(3)) %!error cauchy_rnd (i, 2) %!error cauchy_rnd (2, i) %!error cauchy_rnd (1,2, -1) %!error cauchy_rnd (1,2, ones(2)) %!error cauchy_rnd (1,2, [2 -1 2]) %!error cauchy_rnd (1,2, 1, ones(2)) %!error cauchy_rnd (1,2, 1, -1) %!error cauchy_rnd (ones(2,2), 2, 3) %!error cauchy_rnd (ones(2,2), 2, [3, 2]) %!error cauchy_rnd (ones(2,2), 2, 2, 3)