Mercurial > hg > octave-lyh
view scripts/statistics/distributions/nbininv.m @ 13803:a2e158c3451f
provide the waitbar function
* waitbar.m: New file.
* plot/module.mk (plot_FCN_FILES): Add it to the list.
* NEWS: Add waitbar to the list of new functions.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 03 Nov 2011 05:30:45 -0400 |
parents | 19b9f17d22af |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2011 Rik Wehbring ## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbininv (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the negative binomial distribution ## with parameters @var{n} and @var{p}. ## ## When @var{n} is integer this is the Pascal distribution. When ## @var{n} is extended to real numbers this is the Polya distribution. ## ## The number of failures in a Bernoulli experiment with success ## probability @var{p} before the @var{n}-th success follows this ## distribution. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the Pascal distribution function inv = nbininv (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar (n) || !isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbininv: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("nbininv: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")) inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = (isnan (x) | (x < 0) | (x > 1) | isnan (n) | (n < 1) | (n == Inf) | isnan (p) | (p < 0) | (p > 1)); inv(k) = NaN; k = (x == 1) & (n > 0) & (n < Inf) & (p >= 0) & (p <= 1); inv(k) = Inf; k = find ((x >= 0) & (x < 1) & (n > 0) & (n < Inf) & (p > 0) & (p <= 1)); m = zeros (size (k)); x = x(k); if (isscalar (n) && isscalar (p)) s = p ^ n * ones (size (k)); while (1) l = find (s < x); if (any (l)) m(l) = m(l) + 1; s(l) = s(l) + nbinpdf (m(l), n, p); else break; endif endwhile else n = n(k); p = p(k); s = p .^ n; while (1) l = find (s < x); if (any (l)) m(l) = m(l) + 1; s(l) = s(l) + nbinpdf (m(l), n(l), p(l)); else break; endif endwhile endif inv(k) = m; endfunction %!shared x %! x = [-1 0 3/4 1 2]; %!assert(nbininv (x, ones(1,5), 0.5*ones(1,5)), [NaN 0 1 Inf NaN]); %!assert(nbininv (x, 1, 0.5*ones(1,5)), [NaN 0 1 Inf NaN]); %!assert(nbininv (x, ones(1,5), 0.5), [NaN 0 1 Inf NaN]); %!assert(nbininv (x, [1 0 NaN Inf 1], 0.5), [NaN NaN NaN NaN NaN]); %!assert(nbininv (x, [1 0 1.5 Inf 1], 0.5), [NaN NaN 2 NaN NaN]); %!assert(nbininv (x, 1, 0.5*[1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN]); %!assert(nbininv ([x(1:2) NaN x(4:5)], 1, 0.5), [NaN 0 NaN Inf NaN]); %% Test class of input preserved %!assert(nbininv ([x, NaN], 1, 0.5), [NaN 0 1 Inf NaN NaN]); %!assert(nbininv (single([x, NaN]), 1, 0.5), single([NaN 0 1 Inf NaN NaN])); %!assert(nbininv ([x, NaN], single(1), 0.5), single([NaN 0 1 Inf NaN NaN])); %!assert(nbininv ([x, NaN], 1, single(0.5)), single([NaN 0 1 Inf NaN NaN])); %% Test input validation %!error nbininv () %!error nbininv (1) %!error nbininv (1,2) %!error nbininv (1,2,3,4) %!error nbininv (ones(3),ones(2),ones(2)) %!error nbininv (ones(2),ones(3),ones(2)) %!error nbininv (ones(2),ones(2),ones(3)) %!error nbininv (i, 2, 2) %!error nbininv (2, i, 2) %!error nbininv (2, 2, i)