Mercurial > hg > octave-lyh
view scripts/statistics/distributions/nbinpdf.m @ 13803:a2e158c3451f
provide the waitbar function
* waitbar.m: New file.
* plot/module.mk (plot_FCN_FILES): Add it to the list.
* NEWS: Add waitbar to the list of new functions.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 03 Nov 2011 05:30:45 -0400 |
parents | 19b9f17d22af |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2011 Rik Wehbring ## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbinpdf (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the probability density function ## (PDF) at @var{x} of the negative binomial distribution with ## parameters @var{n} and @var{p}. ## ## When @var{n} is integer this is the Pascal distribution. When ## @var{n} is extended to real numbers this is the Polya distribution. ## ## The number of failures in a Bernoulli experiment with success ## probability @var{p} before the @var{n}-th success follows this ## distribution. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the Pascal (negative binomial) distribution function pdf = nbinpdf (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar (n) || !isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbinpdf: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("nbinpdf: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")) pdf = NaN (size (x), "single"); else pdf = NaN (size (x)); endif ok = (x < Inf) & (x == fix (x)) & (n > 0) & (n < Inf) & (p >= 0) & (p <= 1); k = (x < 0) & ok; pdf(k) = 0; k = (x >= 0) & ok; if (isscalar (n) && isscalar (p)) pdf(k) = bincoeff (-n, x(k)) .* (p ^ n) .* ((p - 1) .^ x(k)); else pdf(k) = bincoeff (-n(k), x(k)) .* (p(k) .^ n(k)) .* ((p(k) - 1) .^ x(k)); endif endfunction %!shared x,y %! x = [-1 0 1 2 Inf]; %! y = [0 1/2 1/4 1/8 NaN]; %!assert(nbinpdf (x, ones(1,5), 0.5*ones(1,5)), y); %!assert(nbinpdf (x, 1, 0.5*ones(1,5)), y); %!assert(nbinpdf (x, ones(1,5), 0.5), y); %!assert(nbinpdf (x, [0 1 NaN 1.5 Inf], 0.5), [NaN 1/2 NaN 1.875*0.5^1.5/4 NaN], eps); %!assert(nbinpdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)]); %!assert(nbinpdf ([x, NaN], 1, 0.5), [y, NaN]); %% Test class of input preserved %!assert(nbinpdf (single([x, NaN]), 1, 0.5), single([y, NaN])); %!assert(nbinpdf ([x, NaN], single(1), 0.5), single([y, NaN])); %!assert(nbinpdf ([x, NaN], 1, single(0.5)), single([y, NaN])); %% Test input validation %!error nbinpdf () %!error nbinpdf (1) %!error nbinpdf (1,2) %!error nbinpdf (1,2,3,4) %!error nbinpdf (ones(3),ones(2),ones(2)) %!error nbinpdf (ones(2),ones(3),ones(2)) %!error nbinpdf (ones(2),ones(2),ones(3)) %!error nbinpdf (i, 2, 2) %!error nbinpdf (2, i, 2) %!error nbinpdf (2, 2, i)