Mercurial > hg > octave-lyh
view scripts/statistics/distributions/unidpdf.m @ 13803:a2e158c3451f
provide the waitbar function
* waitbar.m: New file.
* plot/module.mk (plot_FCN_FILES): Add it to the list.
* NEWS: Add waitbar to the list of new functions.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 03 Nov 2011 05:30:45 -0400 |
parents | 19b9f17d22af |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2011 Rik Wehbring ## Copyright (C) 2007-2011 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} unidpdf (@var{x}, @var{n}) ## For each element of @var{x}, compute the probability density function ## (PDF) at @var{x} of a discrete uniform distribution which assumes ## the integer values 1--@var{n} with equal probability. ## ## Warning: The underlying implementation uses the double class and ## will only be accurate for @var{n} @leq{} @code{bitmax} ## (@w{@math{2^{53} - 1}} on IEEE-754 compatible systems). ## @end deftypefn function pdf = unidpdf (x, n) if (nargin != 2) print_usage (); endif if (! isscalar (n)) [retval, x, n] = common_size (x, n); if (retval > 0) error ("unidpdf: X and N must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n)) error ("unidpdf: X and N must not be complex"); endif if (isa (x, "single") || isa (n, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = isnan (x) | ! (n > 0 & n == fix (n)); pdf(k) = NaN; k = !k & (x >= 1) & (x <= n) & (x == fix (x)); if (isscalar (n)) pdf(k) = 1 / n; else pdf(k) = 1 ./ n(k); endif endfunction %!shared x,y %! x = [-1 0 1 2 10 11]; %! y = [0 0 0.1 0.1 0.1 0]; %!assert(unidpdf (x, 10*ones(1,6)), y); %!assert(unidpdf (x, 10), y); %!assert(unidpdf (x, 10*[0 NaN 1 1 1 1]), [NaN NaN y(3:6)]); %!assert(unidpdf ([x, NaN], 10), [y, NaN]); %% Test class of input preserved %!assert(unidpdf (single([x, NaN]), 10), single([y, NaN])); %!assert(unidpdf ([x, NaN], single(10)), single([y, NaN])); %% Test input validation %!error unidpdf () %!error unidpdf (1) %!error unidpdf (1,2,3) %!error unidpdf (ones(3),ones(2)) %!error unidpdf (ones(2),ones(3)) %!error unidpdf (i, 2) %!error unidpdf (2, i)