Mercurial > hg > octave-lyh
view scripts/polynomial/pchip.m @ 12594:a3a7da1489b2 stable
Modify func.txi discussion of output arguments to include discussion of isargout.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 11 Apr 2011 19:03:32 -0700 |
parents | c792872f8942 |
children | 59e2460acae1 |
line wrap: on
line source
## Copyright (C) 2001-2011 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} pchip (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{yi} =} pchip (@var{x}, @var{y}, @var{xi}) ## ## Piecewise Cubic Hermite interpolating polynomial. Called with two ## arguments, the piecewise polynomial @var{pp} is returned, that may ## later be used with @code{ppval} to evaluate the polynomial at ## specific points. ## ## The variable @var{x} must be a strictly monotonic vector (either ## increasing or decreasing). While @var{y} can be either a vector or ## array. In the case where @var{y} is a vector, it must have a length ## of @var{n}. If @var{y} is an array, then the size of @var{y} must ## have the form ## @tex ## $$[s_1, s_2, \cdots, s_k, n]$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} ## @end ifnottex ## The array is then reshaped internally to a matrix where the leading ## dimension is given by ## @tex ## $$s_1 s_2 \cdots s_k$$ ## @end tex ## @ifnottex ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} ## @end ifnottex ## and each row in this matrix is then treated separately. Note that this ## is exactly the opposite treatment than @code{interp1} and is done ## for compatibility. ## ## Called with a third input argument, @code{pchip} evaluates the ## piecewise polynomial at the points @var{xi}. There is an equivalence ## between @code{ppval (pchip (@var{x}, @var{y}), @var{xi})} and ## @code{pchip (@var{x}, @var{y}, @var{xi})}. ## ## @seealso{spline, ppval, mkpp, unmkpp} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Date: 9. mar 2001 ## ## S_k = a_k + b_k*x + c_k*x^2 + d_k*x^3; (spline polynom) ## ## 4 conditions: ## S_k(x_k) = y_k; ## S_k(x_k+1) = y_k+1; ## S_k'(x_k) = y_k'; ## S_k'(x_k+1) = y_k+1'; function ret = pchip (x, y, xi) if (nargin < 2 || nargin > 3) print_usage (); endif x = x(:).'; n = length (x); ## Check the size and shape of y if (isvector (y)) y = y(:).'; szy = size (y); else szy = size (y); y = reshape (y, [prod(szy(1:end-1)), szy(end)]); endif h = diff (x); if (all (h < 0)) x = fliplr (x); h = diff (x); y = fliplr (y); elseif (any (h <= 0)) error("pchip: X must be strictly monotonic"); endif if (columns (y) != n) error("pchip: size of X and Y must match"); endif f1 = y(:,1:n-1); ## Compute derivatives. d = __pchip_deriv__ (x, y, 2); d1 = d(:,1:n-1); d2 = d(:,2:n); ## This is taken from SLATEC. h = diag (h); delta = diff (y, 1, 2) / h; del1 = (d1 - delta) / h; del2 = (d2 - delta) / h; c3 = del1 + del2; c2 = -c3 - del1; c3 = c3 / h; coeffs = cat (3, c3, c2, d1, f1); pp = mkpp (x, coeffs, szy(1:end-1)); if (nargin == 2) ret = pp; else ret = ppval (pp, xi); endif endfunction %!demo %! x = 0:8; %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; %! xi = 0:0.01:8; %! yspline = spline(x,y,xi); %! ypchip = pchip(x,y,xi); %! title("pchip and spline fit to discontinuous function"); %! plot(xi,yspline,xi,ypchip,"-",x,y,"+"); %! legend ("spline","pchip","data"); %! %------------------------------------------------------------------- %! % confirm that pchip agreed better to discontinuous data than spline %!shared x,y %! x = 0:8; %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; %!assert (pchip(x,y,x), y); %!assert (pchip(x,y,x'), y'); %!assert (pchip(x',y',x'), y'); %!assert (pchip(x',y',x), y); %!assert (isempty(pchip(x',y',[]))); %!assert (isempty(pchip(x,y,[]))); %!assert (pchip(x,[y;y],x), [pchip(x,y,x);pchip(x,y,x)])