Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/betainc.cc @ 7815:a41df65f3f00
Add some single precision test code and fix resulting bugs
author | David Bateman <dbateman@free.fr> |
---|---|
date | Wed, 28 May 2008 01:03:35 +0200 |
parents | 82be108cc558 |
children | 81d6ab3ac93c |
line wrap: on
line source
/* Copyright (C) 1997, 1999, 2000, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-specfun.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (betainc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})\n\ Return the incomplete Beta function,\n\ @iftex\n\ @tex\n\ $$\n\ \\beta (x, a, b) = B (a, b)^{-1} \\int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @smallexample\n\ x\n\ /\n\ betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.\n\ /\n\ t=0\n\ @end smallexample\n\ @end ifinfo\n\ \n\ If x has more than one component, both @var{a} and @var{b} must be\n\ scalars. If @var{x} is a scalar, @var{a} and @var{b} must be of\n\ compatible dimensions.\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 3) { octave_value x_arg = args(0); octave_value a_arg = args(1); octave_value b_arg = args(2); // FIXME Can we make a template version of the duplicated code below if (x_arg.is_single_type () || a_arg.is_single_type () || b_arg.is_single_type ()) { if (x_arg.is_scalar_type ()) { float x = x_arg.float_value (); if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); if (! error_state) retval = betainc (x, a, b); } else { FloatNDArray b = b_arg.float_array_value (); if (! error_state) retval = betainc (x, a, b); } } } else { FloatNDArray a = a_arg.float_array_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); if (! error_state) retval = betainc (x, a, b); } else { FloatNDArray b = b_arg.float_array_value (); if (! error_state) retval = betainc (x, a, b); } } } } else { FloatNDArray x = x_arg.float_array_value (); if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); if (! error_state) retval = betainc (x, a, b); } else { FloatNDArray b = b_arg.float_array_value (); if (! error_state) retval = betainc (x, a, b); } } } else { FloatNDArray a = a_arg.float_array_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); if (! error_state) retval = betainc (x, a, b); } else { FloatNDArray b = b_arg.float_array_value (); if (! error_state) retval = betainc (x, a, b); } } } } } else { if (x_arg.is_scalar_type ()) { double x = x_arg.double_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); if (! error_state) retval = betainc (x, a, b); } else { NDArray b = b_arg.array_value (); if (! error_state) retval = betainc (x, a, b); } } } else { NDArray a = a_arg.array_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); if (! error_state) retval = betainc (x, a, b); } else { NDArray b = b_arg.array_value (); if (! error_state) retval = betainc (x, a, b); } } } } else { NDArray x = x_arg.array_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); if (! error_state) retval = betainc (x, a, b); } else { NDArray b = b_arg.array_value (); if (! error_state) retval = betainc (x, a, b); } } } else { NDArray a = a_arg.array_value (); if (! error_state) { if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); if (! error_state) retval = betainc (x, a, b); } else { NDArray b = b_arg.array_value (); if (! error_state) retval = betainc (x, a, b); } } } } } } else print_usage (); return retval; } /* %% test/octave.test/arith/betainc-1.m %!test %! a=[1, 1.5, 2, 3]; %! b=[4, 3, 2, 1]; %! v1=betainc(1,a,b); %! v2=[1,1,1,1]; %! x = [.2, .4, .6, .8]; %! v3=betainc(x, a, b); %! v4 = 1-betainc(1.-x, b, a); %! assert(v1, v2, sqrt(eps)); %! assert(v3, v4, sqrt(eps)); %% Single precision %!test %! a=single ([1, 1.5, 2, 3]); %! b=single ([4, 3, 2, 1]); %! v1=betainc(1,a,b); %! v2=single ([1,1,1,1]); %! x = single ([.2, .4, .6, .8]); %! v3=betainc(x, a, b); %! v4 = 1-betainc(1.-x, b, a); %! assert(v1, v2, sqrt(eps ('single'))); %! assert(v3, v4, sqrt(eps ('single'))); %% Mixed double/single precision %!test %! a=single ([1, 1.5, 2, 3]); %! b=[4, 3, 2, 1]; %! v1=betainc(1,a,b); %! v2=single ([1,1,1,1]); %! x = [.2, .4, .6, .8]; %! v3=betainc(x, a, b); %! v4 = 1-betainc(1.-x, b, a); %! assert(v1, v2, sqrt(eps ('single'))); %! assert(v3, v4, sqrt(eps ('single'))); %% test/octave.test/arith/betainc-2.m %!error <Invalid call to betainc.*> betainc(); %% test/octave.test/arith/betainc-3.m %!error <Invalid call to betainc.*> betainc(1); %% test/octave.test/arith/betainc-4.m %!error <Invalid call to betainc.*> betainc(1,2); */ /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */