Mercurial > hg > octave-lyh
view scripts/polynomial/splinefit.m @ 14509:a88f8e4fae56
New Function, splinefit.m
* __splinefit__.m: New private file. Jonas Lundgren's splinefit.m with BSD
License. Jonas emailed this version to Octave's developers.
* splinefit.m: New File. Piece-wise polynomial fit. This is a wrapper for
__splinefit__.m. The wrapper allows for Octave's tex-info documentation,
demos, and tests to be added. In addition the input syntax has been sligtly
modified to allow new options to be added without breaking compatiblity.
* doc/splineimages.m: New file to produce splineimages<#> for the docs.
* doc/images: Include splineimages.m and the figues for the docs.
* scripts/polynomial/module.mk: Add new files.
* doc/interpreter/poly.txi: Minimal description of splinefit.
author | Ben Abbott <bpabbott@mac.com> |
---|---|
date | Thu, 29 Mar 2012 19:13:21 -0400 |
parents | |
children | 27f028a670b4 |
line wrap: on
line source
## Copyright (C) 2012 Ben Abbott, Jonas Lundgren ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{breaks}) ## Fits a piecewise cubic spline with breaks (knots) @var{breaks} to the ## noisy data, @var{x} and @var{y}. @var{x} is a vector, and @var{y} ## a vector or ND array. If @var{y} is an ND array, then @var{x}(j) ## is matched to @var{y}(:,...,:,j). ## ## The fitted spline is returned as a piece-wise polynomial, @var{pp}, and ## may be evaluated using @code{ppval}. ## ## @deftypefnx {Function File} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{p}) ## @var{p} is a positive integer defining the number of linearly spaced ## intervals along @var{x}. @var{p} is the number of intervalas and ## @var{p}+1 is the number of breaks. ## ## @deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "periodic", @var{periodic}) ## @deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "robust", @var{robust}) ## @deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "beta", @var{beta}) ## @deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "order", @var{order}) ## @deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "constraints", @var{constraints}) ## ## The optional property @var{periodic} is a logical value which specifies ## whether a periodic boundary condition is applied to the spline. The ## length of the period is @code{max(@var{breaks})-min(@var{breaks})}. ## The default value is @code{false}. ## ## The optional property @var{robust} is a logical value which specifies ## if robust fitting is to be applied to reduce the influence of outlying ## data points. Three iterations of weighted least squares are performed. ## Weights are computed from previous residuals. The sensitivity of outlier ## identification is controlled by the property @var{beta}. The value of ## @var{beta} is stricted to the range, 0 < @var{beta} < 1. The default ## value is @var{beta} = 1/2. Values close to 0 give all data equal ## weighting. Increasing values of @var{beta} reduce the influence of ## outlying data. Values close to unity may cause instability or rank ## deficiency. ## ## @var{order} sets the order polynomials used to construct the spline. ## The default is a cubic, @var{order}=3. A spline with P pieces has ## P+@var{order} degrees of freedom. With periodic boundary conditions ## the degrees of freedom are reduced to P. ## ## The optional property, @var{constaints}, is a structure specifying ## linear constraints on the fit. The structure has three fields, "xc", ## "yc", and "cc". ## ## @table @asis ## @item "xc" ## x-locations of the constraints (vector) with a size identical to @var{x}. ## @item "yc" ## Constaining values with a size identical to @var{y}. The default ## is an array of zeros. ## @item "cc" ## Coefficients (matrix). The default is an array of ones. The number of ## rows is limited to the order of the piece-wise polynomials, @var{order}. ## @end table ## ## Constraints are linear combinations of derivatives of order 0 to ## @var{order}-1 according to ## ## @example ## @group ## @tex ## $cc(1,j) \cdot y(x) + cc(2,j) \cdot y\prime(x) + ... = yc(:,\dots,:,j), \quad x = xc(j)$. ## @end tex ## @ifnottex ## cc(1,j) * y(x) + cc(2,j) * y'(x) + ... = yc(:,...,:,j), x = xc(j). ## @end ifnottex ## @end group ## @end example ## ## @seealso{interp1, unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps} ## @end deftypefn %!demo %! % Noisy data %! x = linspace (0, 2*pi, 100); %! y = sin (x) + 0.1 * randn (size (x)); %! % Breaks %! breaks = [0:5, 2*pi]; %! % Fit a spline of order 5 %! pp = splinefit (x, y, breaks, "order", 4); %! clf () %! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r") %! xlabel ("Independent Variable") %! ylabel ("Dependent Variable") %! title ("Fit a piece-wise polynomial of order 4"); %! legend ({"data", "fit", "breaks"}) %! axis tight %! ylim auto %!demo %! % Noisy data %! x = linspace (0,2*pi, 100); %! y = sin (x) + 0.1 * randn (size (x)); %! % Breaks %! breaks = [0:5, 2*pi]; %! % Fit a spline of order 3 with periodic boundary conditions %! pp = splinefit (x, y, breaks, "order", 2, "periodic", true); %! clf () %! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r") %! xlabel ("Independent Variable") %! ylabel ("Dependent Variable") %! title ("Fit a periodic piece-wise polynomial of order 2"); %! legend ({"data", "fit", "breaks"}) %! axis tight %! ylim auto %!demo %! % Noisy data %! x = linspace (0, 2*pi, 100); %! y = sin (x) + 0.1 * randn (size (x)); %! % Breaks %! breaks = [0:5, 2*pi]; %! % Constraints: y(0) = 0, y"(0) = 1 and y(3) + y"(3) = 0 %! xc = [0 0 3]; %! yc = [0 1 0]; %! cc = [1 0 1; 0 1 0; 0 0 1]; %! con = struct ("xc", xc, "yc", yc, "cc", cc); %! % Fit a cubic spline with 8 pieces and constraints %! pp = splinefit (x, y, 8, "constraints", con); %! clf () %! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r") %! xlabel ("Independent Variable") %! ylabel ("Dependent Variable") %! title ("Fit a cubic spline with constraints") %! legend ({"data", "fit", "breaks"}) %! axis tight %! ylim auto %!demo %! % Noisy data %! x = linspace (0, 2*pi, 100); %! y = sin (x) + 0.1 * randn (size (x)); %! % Breaks %! breaks = [0:5, 2*pi]; %! xc = [0 0 3]; %! yc = [0 1 0]; %! cc = [1 0 1; 0 1 0; 0 0 1]; %! con = struct ("xc", xc, "yc", yc, "cc", cc); %! % Fit a spline of order 6 with constraints and periodicity %! pp = splinefit (x, y, breaks, "constraints", con, "order", 5, "periodic", true); %! clf () %! plot (x, y, "s", x, ppval (pp, x), "r", breaks, ppval (pp, breaks), "+r") %! xlabel ("Independent Variable") %! ylabel ("Dependent Variable") %! title ("Fit a 5th order piece-wise periodic polynomial with constraints") %! legend ({"data", "fit", "breaks"}) %! axis tight %! ylim auto function pp = splinefit (x, y, breaks, varargin) if (nargin > 3) n = cellfun (@ischar, varargin, "uniformoutput", true); varargin(n) = lower (varargin(n)); try props = struct (varargin{:}); catch print_usage (); end_try_catch else props = struct (); endif fields = fieldnames (props); for f = 1:numel(fields) if (! any (strcmp (fields{f}, {"periodic", "robust", "beta", ... "order", "constraints"}))) error (sprintf ("%s:invalidproperty", mfilename ()), sprintf ("""%s"" is not recongizied", fields{f})) endif endfor args = {}; if (isfield (props, "periodic") && props.periodic) args{end+1} = "p"; endif if (isfield (props, "robust") && props.robust) args{end+1} = "r"; endif if (isfield (props, "beta")) if (0 < props.beta && props.beta < 1) args{end+1} = props.beta; else error (sprintf ("%s:invalidbeta", mfilename), "Invalid beta parameter (0 < beta < 1)") endif endif if (isfield (props, "order")) if (props.order >= 0) args{end+1} = props.order + 1; else error (sprintf ("%s:invalidorder", mfilename), "Invalid order") endif endif if (isfield (props, "constraints")) args{end+1} = props.constraints; endif if (nargin < 3) print_usage (); elseif (! isnumeric (breaks) || ! isvector (breaks)) print_usage (); endif pp = __splinefit__ (x, y, breaks, args{:}); endfunction %!shared xb, yb, x %! xb = 0:2:10; %! yb = randn (size (xb)); %! x = 0:0.1:10; %!test %! y = interp1 (xb, yb, x, "linear"); %! assert (ppval (splinefit (x, y, xb, "order", 1), x), y, 10 * eps ()); %!test %! y = interp1 (xb, yb, x, "spline"); %! assert (ppval (splinefit (x, y, xb, "order", 3), x), y, 10 * eps ()); %!test %! y = interp1 (xb, yb, x, "spline"); %! assert (ppval (splinefit (x, y, xb), x), y, 10 * eps ());