Mercurial > hg > octave-lyh
view scripts/statistics/base/histc.m @ 10687:a8ce6bdecce5
Improve documentation strings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 08 Jun 2010 20:22:38 -0700 |
parents | cab3b148d4e4 |
children | be55736a0783 |
line wrap: on
line source
## Copyright (C) 2009, Søren Hauberg ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{n} =} histc (@var{y}, @var{edges}) ## @deftypefnx {Function File} {@var{n} =} histc (@var{y}, @var{edges}, @var{dim}) ## @deftypefnx {Function File} {[@var{n}, @var{idx}] =} histc (@dots{}) ## Produce histogram counts. ## ## When @var{y} is a vector, the function counts the number of elements of ## @var{y} that fall in the histogram bins defined by @var{edges}. This must be ## a vector of monotonically non-decreasing values that define the edges of the ## histogram bins. So, @code{@var{n} (k)} contains the number of elements in ## @var{y} for which @code{@var{edges} (k) <= @var{y} < @var{edges} (k+1)}. ## The final element of @var{n} contains the number of elements of @var{y} ## that was equal to the last element of @var{edges}. ## ## When @var{y} is a @math{N}-dimensional array, the same operation as above is ## repeated along dimension @var{dim}. If not specified @var{dim} defaults ## to the first non-singleton dimension. ## ## If a second output argument is requested an index matrix is also returned. ## The @var{idx} matrix has same size as @var{y}. Each element of @var{idx} ## contains the index of the histogram bin in which the corresponding element ## of @var{y} was counted. ## ## @seealso{hist} ## @end deftypefn function [n, idx] = histc (data, edges, dim) ## Check input if (nargin < 2 || nargin > 3) print_usage (); endif if (!isreal (data)) error ("histc: Y argument must be real-valued, not complex"); endif num_edges = numel (edges); if (num_edges == 0) error ("histc: EDGES must not be empty") endif if (!isreal (edges)) error ("histc: EDGES must be real-valued, not complex"); else ## Make sure 'edges' is sorted edges = edges (:); if (! issorted (edges) || edges(1) > edges(end)) warning ("histc: edge values not sorted on input"); edges = sort (edges); endif endif nd = ndims (data); sz = size (data); if (nargin < 3) ## Find the first non-singleton dimension. dim = find (sz > 1, 1); if (isempty (dim)) dim = 1; endif else if (!(isscalar (dim) && dim == round (dim)) || !(1 <= dim && dim <= nd)) error ("histc: DIM must be an integer and a valid dimension"); endif endif nsz = sz; nsz (dim) = num_edges; ## the splitting point is 3 bins if (num_edges <= 3) ## This is the O(M*N) algorithm. ## Allocate the histogram n = zeros (nsz); ## Allocate 'idx' if (nargout > 1) idx = zeros (sz); endif ## Prepare indices idx1 = cell (1, dim-1); for k = 1:length (idx1) idx1 {k} = 1:sz (k); endfor idx2 = cell (length (sz) - dim); for k = 1:length (idx2) idx2 {k} = 1:sz (k+dim); endfor ## Compute the histograms for k = 1:num_edges-1 b = (edges (k) <= data & data < edges (k+1)); n (idx1 {:}, k, idx2 {:}) = sum (b, dim); if (nargout > 1) idx (b) = k; endif endfor b = (data == edges (end)); n (idx1 {:}, num_edges, idx2 {:}) = sum (b, dim); if (nargout > 1) idx (b) = num_edges; endif else ## This is the O(M*log(N) + N) algorithm. ## Look-up indices. idx = lookup (edges, data); ## Zero invalid ones (including NaNs). data < edges(1) are already zero. idx(! (data <= edges(end))) = 0; iidx = idx; ## In case of matrix input, we adjust the indices. if (! isvector (data)) nl = prod (sz(1:dim-1)); nn = sz(dim); nu = prod (sz(dim+1:end)); if (nl != 1) iidx = (iidx-1) * nl; iidx += reshape (kron (ones (1, nn*nu), 1:nl), sz); endif if (nu != 1) ne =length (edges); iidx += reshape (kron (nl*ne*(0:nu-1), ones (1, nl*nn)), sz); endif endif ## Select valid elements. iidx = iidx(idx != 0); ## Call accumarray to sum the indexed elements. n = accumarray (iidx(:), 1, nsz); endif endfunction %!test %! data = linspace (0, 10, 1001); %! n = histc (data, 0:10); %! assert (n, [repmat(100, 1, 10), 1]); %!test %! data = repmat (linspace (0, 10, 1001), [2, 1, 3]); %! n = histc (data, 0:10, 2); %! assert (n, repmat ([repmat(100, 1, 10), 1], [2, 1, 3]));