Mercurial > hg > octave-lyh
view scripts/statistics/base/iqr.m @ 10687:a8ce6bdecce5
Improve documentation strings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 08 Jun 2010 20:22:38 -0700 |
parents | cab3b148d4e4 |
children | fe3c3dfc07eb |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 1998, 2000, 2002, 2003, 2004, 2005, ## 2006, 2007, 2009 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} iqr (@var{x}, @var{dim}) ## If @var{x} is a vector, return the interquartile range, i.e., the ## difference between the upper and lower quartile, of the input data. ## ## If @var{x} is a matrix, do the above for first non-singleton ## dimension of @var{x}. If the option @var{dim} argument is given, ## then operate along this dimension. ## @end deftypefn ## Author KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Interquartile range function y = iqr (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (!ismatrix(x) || ischar(x)) error ("iqr: X must be a numeric matrix or vector"); endif nd = ndims (x); sz = size (x); nel = numel (x); if (nargin != 2) ## Find the first non-singleton dimension. dim = find (sz > 1, 1); if (isempty (dim)) dim = 1; endif else if (!(isscalar (dim) && dim == round (dim)) || !(1 <= dim && dim <= nd)) error ("iqr: DIM must be an integer and a valid dimension"); endif endif ## This code is a bit heavy, but is needed until empirical_inv ## takes other than vector arguments. c = sz(dim); sz(dim) = 1; y = zeros (sz); stride = prod (sz(1:dim-1)); for i = 1 : nel / c; offset = i; offset2 = 0; while (offset > stride) offset -= stride; offset2++; endwhile offset += offset2 * stride * c; rng = [0 : c-1] * stride + offset; y (i) = empirical_inv (3/4, x(rng)) - empirical_inv (1/4, x(rng)); endfor endfunction