Mercurial > hg > octave-lyh
view scripts/general/interpn.m @ 7561:a938cd7869b2
__lin_interpn__.cc: handle decreasing coordinate values
author | Alexander Barth |
---|---|
date | Thu, 06 Mar 2008 01:56:55 -0500 |
parents | 132647e6c829 |
children | 4fbaba9abec1 |
line wrap: on
line source
## Copyright (C) 2007 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) ## ## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. ## Each element of then @var{n}-dimensional array @var{v} represents a value ## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. ## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either ## @var{n}-dimensional arrays of the same size as the array @var{v} in ## the 'ndgrid' format or vectors. The parameters @var{y1}, etc respect a ## similar format to @var{x1}, etc, and they represent the points at which ## the array @var{vi} is interpolated. ## ## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be ## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interpolation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## Method is one of: ## ## @table @asis ## @item 'nearest' ## Return the nearest neighbour. ## @item 'linear' ## Linear interpolation from nearest neighbours. ## @item 'cubic' ## Cubic interpolation from four nearest neighbours (not implemented yet). ## @item 'spline' ## Cubic spline interpolation--smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is 'linear'. ## ## If @var{extrap} is the string 'extrap', then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NA. ## @seealso{interp1, interp2, spline, ndgrid} ## @end deftypefn function vi = interpn (varargin) method = "linear"; extrapval = NA; nargs = nargin; if (nargin < 1) print_usage (); endif if (ischar (varargin{end})) method = varargin{end}; nargs = nargs - 1; elseif (ischar (varargin{end - 1})) if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) error ("extrapal is expected to be a numeric scalar"); endif method = varargin{end - 1}; nargs = nargs - 2; endif if (nargs < 3) v = varargin{1}; m = 1; if (nargs == 2) m = varargin{2}; if (! isnumeric (m) || ! isscalar (m) || floor (m) != m) error ("m is expected to be a integer scalar"); endif endif sz = size (v); nd = ndims (v); x = cell (1, nd); y = cell (1, nd); for i = 1 : nd; x{i} = 1 : sz(i); y{i} = 1 : (1 / (2 ^ m)) : sz(i); endfor elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1)) v = varargin{1}; sz = size (v); nd = ndims (v); x = cell (1, nd); y = varargin (2 : nargs); for i = 1 : nd; x{i} = 1 : sz(i); endfor elseif (rem (nargs, 2) == 1 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1) nv = ceil (nargs / 2); v = varargin{nv}; sz = size (v); nd = ndims (v); x = varargin (1 : (nv - 1)); y = varargin ((nv + 1) : nargs); else error ("wrong number or incorrectly formatted input arguments"); endif if (any (! cellfun (@isvector, x))) for i = 2 : nd if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("dimensional mismatch"); endif idx (1 : nd) = {1}; idx (i) = ":"; x{i} = x{i}(idx{:})(:); endfor idx (1 : nd) = {1}; idx (1) = ":"; x{1} = x{1}(idx{:})(:); endif method = tolower (method); if (strcmp (method, "linear")) vi = __lin_interpn__ (x{:}, v, y{:}); vi (isna (vi)) = extrapval; elseif (strcmp (method, "nearest")) yshape = size (y{1}); yidx = cell (1, nd); for i = 1 : nd y{i} = y{i}(:); yidx{i} = lookup (x{i}(2:end-1), y{i}) + 1; endfor idx = cell (1,nd); for i = 1 : nd idx{i} = yidx{i} + (y{i} - x{i}(yidx{i}) > x{i}(yidx{i} + 1) - y{i}); endfor vi = v (sub2ind (sz, idx{:})); idx = zeros (prod(yshape),1); for i = 1 : nd idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); endfor vi(idx) = extrapval; vi = reshape (vi, yshape); elseif (strcmp (method, "spline")) if (any (! cellfun (@isvector, y))) for i = 2 : nd if (! size_equal (y{1}, y{i})) error ("dimensional mismatch"); endif idx (1 : nd) = {1}; idx (i) = ":"; y{i} = y{i}(idx{:}); endfor idx (1 : nd) = {1}; idx (1) = ":"; y{1} = y{1}(idx{:}); endif vi = __splinen__ (x, v, y, extrapval, "interpn"); if (size_equal (y{:})) ly = length (y{1}); idx = cell (1, ly); q = cell (1, nd); for i = 1 : ly q(:) = i; idx {i} = q; endfor vi = vi (cellfun (@(x) sub2ind (size(vi), x{:}), idx)); vi = reshape (vi, size(y{1})); endif elseif (strcmp (method, "cubic")) error ("cubic interpolation not yet implemented"); else error ("unrecognized interpolation method"); endif endfunction %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! AI=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!#demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! x = y = z = -1:1; %! f = @(x,y,z) x.^2 - y - z.^2; %! [xx, yy, zz] = meshgrid (x, y, z); %! v = f (xx,yy,zz); %! xi = yi = zi = -1:0.1:1; %! [xxi, yyi, zzi] = ndgrid (xi, yi, zi); %! vi = interpn(x, y, z, v, xxi, yyi, zzi, 'spline'); %! mesh (yi, zi, squeeze (vi(1,:,:))); %!test %! [x,y,z] = ndgrid(0:2); %! f = x+y+z; %! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]) %! assert (interpn(x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],'nearest'), [3, 6]) %! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],'spline'), [1.5, 4.5]) %! assert (interpn(x,y,z,f,x,y,z), f) %! assert (interpn(x,y,z,f,x,y,z,'nearest'), f) %! assert (interpn(x,y,z,f,x,y,z,'spline'), f) %!test %! [x,y,z] = ndgrid(0:2); %! f = x.^2+y.^2+z.^2; %! assert (interpn(x,y,-z,f,1.5,1.5,-1.5), 7.5)