Mercurial > hg > octave-lyh
view scripts/plot/axis.m @ 17434:aa380b380315
axis.m: Fix bug when data sets differ in size and dimension (bug #40036).
* scripts/plot/axis.m: Consolidate all data sets into a single column
vector before finding min/max for tight limits.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 16 Sep 2013 09:15:24 -0700 |
parents | 6dbc866379e2 |
children | 15d592c82abc |
line wrap: on
line source
## Copyright (C) 1994-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} axis () ## @deftypefnx {Function File} {} axis ([@var{x}_lo @var{x}_hi]) ## @deftypefnx {Function File} {} axis ([@var{x}_lo @var{x}_hi @var{y}_lo @var{y}_hi]) ## @deftypefnx {Function File} {} axis ([@var{x}_lo @var{x}_hi @var{y}_lo @var{y}_hi @var{z}_lo @var{z}_hi]) ## @deftypefnx {Function File} {} axis (@var{option}) ## @deftypefnx {Function File} {} axis (@dots{}, @var{option}) ## @deftypefnx {Function File} {} axis (@var{hax}, @dots{}) ## @deftypefnx {Function File} {@var{limits} =} axis () ## Set axis limits and appearance. ## ## The argument @var{limits} should be a 2-, 4-, or 6-element vector. The ## first and second elements specify the lower and upper limits for the ## x-axis. The third and fourth specify the limits for the y-axis, and the ## fifth and sixth specify the limits for the z-axis. ## ## Without any arguments, @code{axis} turns autoscaling on. ## ## With one output argument, @code{@var{limits} = axis} returns the current ## axis limits. ## ## The vector argument specifying limits is optional, and additional ## string arguments may be used to specify various axis properties. For ## example, ## ## @example ## axis ([1, 2, 3, 4], "square"); ## @end example ## ## @noindent ## forces a square aspect ratio, and ## ## @example ## axis ("tic", "labely"); ## @end example ## ## @noindent ## turns tic marks on for all axes and tic mark labels on for the y-axis ## only. ## ## @noindent ## The following options control the aspect ratio of the axes. ## ## @table @asis ## @item @qcode{"square"} ## Force a square aspect ratio. ## ## @item @qcode{"equal"} ## Force x distance to equal y-distance. ## ## @item @qcode{"normal"} ## Restore default aspect ratio. ## @end table ## ## @noindent ## The following options control the way axis limits are interpreted. ## ## @table @asis ## @item @qcode{"auto"} ## Set the specified axes to have nice limits around the data ## or all if no axes are specified. ## ## @item @qcode{"manual"} ## Fix the current axes limits. ## ## @item @qcode{"tight"} ## Fix axes to the limits of the data. ## ## @item @qcode{"image"} ## Equivalent to @qcode{"tight"} and @qcode{"equal"}. ## @end table ## ## @noindent ## The following options affect the appearance of tic marks. ## ## @table @asis ## @item @qcode{"on"} ## Turn tic marks and labels on for all axes. ## ## @item @qcode{"off"} ## Turn tic marks off for all axes. ## ## @item @qcode{"tic[xyz]"} ## Turn tic marks on for all axes, or turn them on for the ## specified axes and off for the remainder. ## ## @item @qcode{"label[xyz]"} ## Turn tic labels on for all axes, or turn them on for the ## specified axes and off for the remainder. ## ## @item @qcode{"nolabel"} ## Turn tic labels off for all axes. ## @end table ## ## Note, if there are no tic marks for an axis, there can be no labels. ## ## @noindent ## The following options affect the direction of increasing values on the axes. ## ## @table @asis ## @item @qcode{"ij"} ## Reverse y-axis, so lower values are nearer the top. ## ## @item @qcode{"xy"} ## Restore y-axis, so higher values are nearer the top. ## @end table ## ## If the first argument @var{hax} is an axes handle, then operate on ## this axes rather than the current axes returned by @code{gca}. ## ## @seealso{xlim, ylim, zlim, daspect, pbaspect, box, grid} ## @end deftypefn ## Author: jwe function limits = axis (varargin) [hax, varargin, nargin] = __plt_get_axis_arg__ ("axis", varargin{:}); oldfig = []; if (! isempty (hax)) oldfig = get (0, "currentfigure"); endif unwind_protect if (isempty (hax)) hax = gca (); endif if (nargin == 0) limits = __axis__ (hax, varargin{:}); else __axis__ (hax, varargin{:}); endif unwind_protect_cleanup if (! isempty (oldfig)) set (0, "currentfigure", oldfig); endif end_unwind_protect endfunction function limits = __axis__ (ca, ax, varargin) if (nargin == 1) if (nargout == 0) set (ca, "xlimmode", "auto", "ylimmode", "auto", "zlimmode", "auto"); else xlim = get (ca, "xlim"); ylim = get (ca, "ylim"); view = get (ca, "view"); if (view(2) == 90) limits = [xlim, ylim]; else zlim = get (ca, "zlim"); limits = [xlim, ylim, zlim]; endif endif elseif (ischar (ax)) len = length (ax); ## 'matrix mode' to reverse the y-axis if (strcmpi (ax, "ij")) set (ca, "ydir", "reverse"); elseif (strcmpi (ax, "xy")) set (ca, "ydir", "normal"); ## aspect ratio elseif (strcmpi (ax, "image")) __axis__ (ca, "equal"); __do_tight_option__ (ca); elseif (strcmpi (ax, "square")) set (ca, "plotboxaspectratio", [1, 1, 1]); elseif (strcmp (ax, "equal")) if (strcmp (get (get (ca, "parent"), "__graphics_toolkit__"), "gnuplot")) ## FIXME - gnuplot applies the aspect ratio activepostionproperty. set (ca, "activepositionproperty", "position"); ## The following line is a trick used to trigger the recalculation of ## aspect related magnitudes even if the aspect ratio is the same ## (useful with the x11 gnuplot terminal after a window resize) set (ca, "dataaspectratiomode", "auto"); endif set (ca, "dataaspectratio", [1, 1, 1]); elseif (strcmpi (ax, "normal")) set (ca, "plotboxaspectratio", [1, 1, 1]); set (ca, "plotboxaspectratiomode", "auto"); ## axis limits elseif (len >= 4 && strcmpi (ax(1:4), "auto")) if (len > 4) if (any (ax == "x")) set (ca, "xlimmode", "auto"); endif if (any (ax == "y")) set (ca, "ylimmode", "auto"); endif if (any (ax == "z")) set (ca, "zlimmode", "auto"); endif else set (ca, "xlimmode", "auto", "ylimmode", "auto", "zlimmode", "auto"); endif elseif (strcmpi (ax, "manual")) ## fixes the axis limits, like axis(axis) should; set (ca, "xlimmode", "manual", "ylimmode", "manual", "zlimmode", "manual"); elseif (strcmpi (ax, "tight")) ## sets the axis limits to the min and max of all data. __do_tight_option__ (ca); ## tic marks elseif (strcmpi (ax, "on") || strcmpi (ax, "tic")) set (ca, "xtickmode", "auto", "ytickmode", "auto", "ztickmode", "auto"); if (strcmpi (ax, "on")) set (ca, "xticklabelmode", "auto", "yticklabelmode", "auto", "zticklabelmode", "auto"); endif set (ca, "visible", "on"); elseif (strcmpi (ax, "off")) set (ca, "xtick", [], "ytick", [], "ztick", []); set (ca, "visible", "off"); elseif (len > 3 && strcmpi (ax(1:3), "tic")) if (any (ax == "x")) set (ca, "xtickmode", "auto"); else set (ca, "xtick", []); endif if (any (ax == "y")) set (ca, "ytickmode", "auto"); else set (ca, "ytick", []); endif if (any (ax == "z")) set (ca, "ztickmode", "auto"); else set (ca, "ztick", []); endif elseif (strcmpi (ax, "label")) set (ca, "xticklabelmode", "auto", "yticklabelmode", "auto", "zticklabelmode", "auto"); elseif (strcmpi (ax, "nolabel")) set (ca, "xticklabel", "", "yticklabel", "", "zticklabel", ""); elseif (len > 5 && strcmpi (ax(1:5), "label")) if (any (ax == "x")) set (ca, "xticklabelmode", "auto"); else set (ca, "xticklabel", ""); endif if (any (ax == "y")) set (ca, "yticklabelmode", "auto"); else set (ca, "yticklabel", ""); endif if (any (ax == "z")) set (ca, "zticklabelmode", "auto"); else set (ca, "zticklabel", ""); endif else warning ("unknown axis option '%s'", ax); endif elseif (isvector (ax)) len = length (ax); if (len != 2 && len != 4 && len != 6) error ("axis: expecting vector with 2, 4, or 6 elements"); endif for i = 1:2:len if (ax(i) >= ax(i+1)) error ("axis: limits(%d) must be less than limits(%d)", i, i+1); endif endfor if (len > 1) set (ca, "xlim", [ax(1), ax(2)]); endif if (len > 3) set (ca, "ylim", [ax(3), ax(4)]); endif if (len > 5) set (ca, "zlim", [ax(5), ax(6)]); endif else error ("axis: expecting no args, or a vector with 2, 4, or 6 elements"); endif if (! isempty (varargin)) __axis__ (ca, varargin{:}); endif endfunction function lims = __get_tight_lims__ (ca, ax) ## Get the limits for axis ("tight"). ## AX should be one of "x", "y", or "z". kids = findobj (ca, "-property", strcat (ax, "data")); ## The data properties for hggroups mirror their children. ## Exclude the redundant hgroup values. hg_kids = findobj (kids, "type", "hggroup"); kids = setdiff (kids, hg_kids); if (isempty (kids)) ## Return the current limits. lims = get (ca, strcat (ax, "lim")); else data = get (kids, strcat (ax, "data")); scale = get (ca, strcat (ax, "scale")); if (! iscell (data)) data = {data}; endif if (strcmp (scale, "log")) tmp = data; data = cellfun (@(x) x(x>0), tmp, "uniformoutput", false); n = cellfun ("isempty", data); data(n) = cellfun (@(x) x(x<0), tmp(n), "uniformoutput", false); endif data = cellfun (@(x) x(isfinite (x)), data, "uniformoutput", false); data = data(! cellfun ("isempty", data)); if (! isempty (data)) ## Change data from cell array of various sizes to a single column vector data = cat (1, cellindexmat (data, ":"){:}); lims = [min(data), max(data)]; else lims = [0, 1]; endif endif endfunction function __do_tight_option__ (ca) xlim = __get_tight_lims__ (ca, "x"); if (all (xlim == 0)) xlim = eps () * [-1 1]; elseif (diff (xlim == 0)) xlim = xlim .* (1 + eps () * [-1, 1]); endif ylim = __get_tight_lims__ (ca, "y"); if (all (ylim == 0)) ylim = eps () * [-1 1]; elseif (diff (ylim == 0)) ylim = ylim .* (1 + eps () * [-1, 1]); endif set (ca, "xlim", xlim, "ylim", ylim) if (__calc_dimensions__ (ca) > 2) zlim = __get_tight_lims__ (ca, "z"); if (all (zlim == 0)) zlim = eps () * [-1 1]; elseif (diff (zlim == 0)) zlim = zlim .* (1 + eps () * [-1, 1]); endif set (ca, "zlim", zlim); endif endfunction %!demo %! clf; %! t = 0:0.01:2*pi; %! x = sin (t); %! %! subplot (221); %! plot (t, x); %! title ('normal plot'); %! %! subplot (222); %! plot (t, x); %! title ('square plot'); %! axis ('square'); %! %! subplot (223); %! plot (t, x); %! title ('equal plot'); %! axis ('equal'); %! %! subplot (224); %! plot (t, x); %! title ('normal plot again'); %! axis ('normal'); %!demo %! clf; %! t = 0:0.01:2*pi; %! x = sin (t); %! %! subplot (121); %! plot (t, x); %! title ('ij plot'); %! axis ('ij'); %! %! subplot (122); %! plot (t, x); %! title ('xy plot'); %! axis ('xy'); %!demo %! clf; %! t = 0:0.01:2*pi; %! x = sin (t); %! %! subplot (331); %! plot (t, x); %! title ('x tics and labels'); %! axis ('ticx'); %! %! subplot (332); %! plot (t, x); %! title ('y tics and labels'); %! axis ('ticy'); %! %! subplot (333); %! plot (t, x); %! title ('axis off'); %! axis ('off'); %! %! subplot (334); %! plot (t, x); %! title ('x and y tics, x labels'); %! axis ('labelx','tic'); %! %! subplot (335); %! plot (t, x); %! title ('x and y tics, y labels'); %! axis ('labely','tic'); %! %! subplot (336); %! plot (t, x); %! title ('all tics but no labels'); %! axis ('nolabel','tic'); %! %! subplot (337); %! plot (t, x); %! title ('x tics, no labels'); %! axis ('nolabel','ticx'); %! %! subplot (338); %! plot (t, x); %! title ('y tics, no labels'); %! axis ('nolabel','ticy'); %! %! subplot (339); %! plot (t, x); %! title ('all tics and labels'); %! axis ('on'); %!demo %! clf; %! t = 0:0.01:2*pi; %! x = sin (t); %! %! subplot (321); %! plot (t, x); %! title ('axes at [0 3 0 1]'); %! axis ([0,3,0,1]); %! %! subplot (322); %! plot (t, x); %! title ('auto'); %! axis ('auto'); %! %! subplot (323); %! plot (t, x, ';sine [0:2pi];'); hold on; %! plot (-3:3,-3:3, ';line (-3,-3)->(3,3);'); hold off; %! title ('manual'); %! axis ('manual'); %! %! subplot (324); %! plot (t, x, ';sine [0:2pi];'); %! title ('axes at [0 3 0 1], then autox'); %! axis ([0,3,0,1]); %! axis ('autox'); %! %! subplot (325); %! plot (t, x, ';sine [0:2pi];'); %! title ('axes at [3 6 0 1], then autoy'); %! axis ([3,6,0,1]); %! axis ('autoy'); %! %! subplot (326); %! plot (t, sin(t), t, -2*sin(t/2)); %! axis ('tight'); %! title ('tight'); %!demo %! clf; %! x = 0:0.1:10; %! plot (x, sin(x)); %! axis image; %! title ({'image', 'equivalent to "tight" & "equal"'}); %!demo %! clf; %! colormap ('default'); %! [x,y,z] = peaks (50); %! x1 = max (x(:)); %! pcolor (x-x1, y-x1/2, z); %! hold on; %! [x,y,z] = sombrero (); %! s = x1 / max (x(:)); %! pcolor (s*x+x1, s*y+x1/2, 5*z); %! axis tight; %!demo %! clf; %! x = -10:10; %! plot (x,x, x,-x); %! set (gca, 'yscale', 'log'); %! legend ({'x >= 1', 'x <= 1'}, 'location', 'north'); %! title ('ylim = [1, 10]'); %!demo %! clf; %! loglog (1:20, '-s'); %! axis tight; %!demo %! clf; %! x = -10:0.1:10; %! y = sin (x)./(1 + abs (x)) + 0.1*x - 0.4; %! plot (x, y); %! set (gca, 'xaxislocation', 'zero'); %! set (gca, 'yaxislocation', 'zero'); %! box off; %! title ({'no plot box', 'xaxislocation = zero, yaxislocation = zero'}); %!demo %! clf; %! x = -10:0.1:10; %! y = sin (x)./(1+abs (x)) + 0.1*x - 0.4; %! plot (x, y); %! set (gca, 'xaxislocation', 'zero'); %! set (gca, 'yaxislocation', 'left'); %! box off; %! title ({'no plot box', 'xaxislocation = zero, yaxislocation = left'}); %!demo %! clf; %! x = -10:0.1:10; %! y = sin (x)./(1+abs (x)) + 0.1*x - 0.4; %! plot (x, y); %! title ('no plot box'); %! set (gca, 'xaxislocation', 'zero'); %! set (gca, 'yaxislocation', 'right'); %! box off; %! title ({'no plot box', 'xaxislocation = zero, yaxislocation = right'}); %!demo %! clf; %! x = -10:0.1:10; %! y = sin (x)./(1+abs (x)) + 0.1*x - 0.4; %! plot (x, y); %! set (gca, 'xaxislocation', 'bottom'); %! set (gca, 'yaxislocation', 'zero'); %! box off; %! title ({'no plot box', 'xaxislocation = bottom, yaxislocation = zero'}); %!demo %! clf; %! x = -10:0.1:10; %! y = sin (x)./(1+abs (x)) + 0.1*x - 0.4; %! plot (x, y); %! set (gca, 'xaxislocation', 'top'); %! set (gca, 'yaxislocation', 'zero'); %! box off; %! title ({'no plot box', 'xaxislocation = top, yaxislocation = zero'}); %!test %! hf = figure ("visible", "off"); %! unwind_protect %! plot (11:20, [21:24, NaN, -Inf, 27:30]); %! hold all; %! plot (11:20, 25.5 + rand (10)); %! axis tight; %! assert (axis (), [11 20 21 30]); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! a = logspace (-5, 1, 10); %! loglog (a, -a); %! axis tight; %! assert (axis (), [1e-5, 10, -10, -1e-5]); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect