Mercurial > hg > octave-lyh
view scripts/control/base/lqe.m @ 7475:aa5208636bea
Fixes for quiver3
author | Kostas Poulios |
---|---|
date | Tue, 12 Feb 2008 16:32:37 -0500 |
parents | 4a375de63f66 |
children |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995, 2000, 2005, 2006, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z}) ## Construct the linear quadratic estimator (Kalman filter) for the ## continuous time system ## @iftex ## @tex ## $$ ## {dx\over dt} = A x + G u ## $$ ## $$ ## y = C x + v ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## dx ## -- = A x + G u ## dt ## ## y = C x + v ## @end example ## ## @end ifinfo ## where @var{w} and @var{v} are zero-mean gaussian noise processes with ## respective intensities ## ## @example ## sigw = cov (w, w) ## sigv = cov (v, v) ## @end example ## ## The optional argument @var{z} is the cross-covariance ## @code{cov (@var{w}, @var{v})}. If it is omitted, ## @code{cov (@var{w}, @var{v}) = 0} is assumed. ## ## Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)} ## ## The following values are returned: ## ## @table @var ## @item k ## The observer gain, ## @iftex ## @tex ## $(A - K C)$ ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{k}@var{c}) ## @end ifinfo ## is stable. ## ## @item p ## The solution of algebraic Riccati equation. ## ## @item e ## The vector of closed loop poles of ## @iftex ## @tex ## $(A - K C)$. ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{k}@var{c}). ## @end ifinfo ## @end table ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 function [k, p, e] = lqe (a, g, c, sigw, sigv, zz) if (nargin != 5 && nargin != 6) error ("lqe: invalid number of arguments"); endif ## The problem is dual to the regulator design, so transform to lqr ## call. if (nargin == 5) [k, p, e] = lqr (a', c', g*sigw*g', sigv); else [k, p, e] = lqr (a', c', g*sigw*g', sigv, g*zz); endif k = k'; endfunction