Mercurial > hg > octave-lyh
view liboctave/lo-utils.cc @ 8500:aaddb450b9aa
[docs] can not => cannot
author | Brian Gough <bjg@gnu.org> |
---|---|
date | Tue, 13 Jan 2009 00:36:52 -0500 |
parents | 82be108cc558 |
children | eb63fbe60fab |
line wrap: on
line source
// utils.cc /* Copyright (C) 1996, 1997, 2000, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cctype> #include <cstdlib> #include <cstdio> #include <cstring> #include <limits> #include <string> #ifdef HAVE_UNISTD_H #ifdef HAVE_SYS_TYPES_H #include <sys/types.h> #endif #include <unistd.h> #endif #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "lo-utils.h" // Convert X to the nearest integer value. Should not pass NaN to // this function. // Sometimes you need a large integer, but not always. octave_idx_type NINTbig (double x) { if (x > std::numeric_limits<octave_idx_type>::max ()) return std::numeric_limits<octave_idx_type>::max (); else if (x < std::numeric_limits<octave_idx_type>::min ()) return std::numeric_limits<octave_idx_type>::min (); else return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5)); } octave_idx_type NINTbig (float x) { if (x > std::numeric_limits<octave_idx_type>::max ()) return std::numeric_limits<octave_idx_type>::max (); else if (x < std::numeric_limits<octave_idx_type>::min ()) return std::numeric_limits<octave_idx_type>::min (); else return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5)); } int NINT (double x) { if (x > std::numeric_limits<int>::max ()) return std::numeric_limits<int>::max (); else if (x < std::numeric_limits<int>::min ()) return std::numeric_limits<int>::min (); else return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5)); } int NINT (float x) { if (x > std::numeric_limits<int>::max ()) return std::numeric_limits<int>::max (); else if (x < std::numeric_limits<int>::min ()) return std::numeric_limits<int>::min (); else return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5)); } double D_NINT (double x) { if (xisinf (x) || xisnan (x)) return x; else return floor (x + 0.5); } float F_NINT (float x) { if (xisinf (x) || xisnan (x)) return x; else return floor (x + 0.5); } // Save a string. char * strsave (const char *s) { if (! s) return 0; int len = strlen (s); char *tmp = new char [len+1]; tmp = strcpy (tmp, s); return tmp; } // This function was adapted from xputenv from Karl Berry's kpathsearch // library. // FIXME -- make this do the right thing if we don't have a // SMART_PUTENV. void octave_putenv (const std::string& name, const std::string& value) { int new_len = name.length () + value.length () + 2; char *new_item = static_cast<char*> (malloc (new_len)); sprintf (new_item, "%s=%s", name.c_str (), value.c_str ()); // As far as I can see there's no way to distinguish between the // various errors; putenv doesn't have errno values. if (putenv (new_item) < 0) (*current_liboctave_error_handler) ("putenv (%s) failed", new_item); } std::string octave_fgets (FILE *f) { bool eof; return octave_fgets (f, eof); } std::string octave_fgets (FILE *f, bool& eof) { eof = false; std::string retval; int grow_size = 1024; int max_size = grow_size; char *buf = static_cast<char *> (malloc (max_size)); char *bufptr = buf; int len = 0; do { if (fgets (bufptr, grow_size, f)) { len = strlen (bufptr); if (len == grow_size - 1) { int tmp = bufptr - buf + grow_size - 1; grow_size *= 2; max_size += grow_size; buf = static_cast<char *> (realloc (buf, max_size)); bufptr = buf + tmp; if (*(bufptr-1) == '\n') { *bufptr = '\0'; retval = buf; } } else if (bufptr[len-1] != '\n') { bufptr[len++] = '\n'; bufptr[len] = '\0'; retval = buf; } else retval = buf; } else { if (len == 0) { eof = true; free (buf); buf = 0; } break; } } while (retval.empty ()); if (buf) free (buf); return retval; } std::string octave_fgetl (FILE *f) { bool eof; return octave_fgetl (f, eof); } std::string octave_fgetl (FILE *f, bool& eof) { std::string retval = octave_fgets (f, eof); size_t len = retval.length (); if (retval[len-1] == '\n') retval.resize (len-1); return retval; } static inline double read_inf_nan_na (std::istream& is, char c, char sign = '+') { double d = 0.0; switch (c) { case 'i': case 'I': { c = is.get (); if (c == 'n' || c == 'N') { c = is.get (); if (c == 'f' || c == 'F') d = sign == '-' ? -octave_Inf : octave_Inf; else is.putback (c); } else is.putback (c); } break; case 'n': case 'N': { c = is.get (); if (c == 'a' || c == 'A') { c = is.get (); if (c == 'n' || c == 'N') d = octave_NaN; else { is.putback (c); d = octave_NA; } } else is.putback (c); } break; default: abort (); } return d; } double octave_read_double (std::istream& is) { double d = 0.0; char c1 = ' '; while (isspace (c1)) c1 = is.get (); switch (c1) { case '-': { char c2 = 0; c2 = is.get (); if (c2 == 'i' || c2 == 'I') d = read_inf_nan_na (is, c2, c1); else { is.putback (c2); is.putback (c1); is >> d; } } break; case '+': { char c2 = 0; c2 = is.get (); if (c2 == 'i' || c2 == 'I') d = read_inf_nan_na (is, c2, c1); else { is.putback (c2); is.putback (c1); is >> d; } } break; case 'i': case 'I': case 'n': case 'N': d = read_inf_nan_na (is, c1); break; default: is.putback (c1); is >> d; } return d; } Complex octave_read_complex (std::istream& is) { double re = 0.0, im = 0.0; Complex cx = 0.0; char ch = ' '; while (isspace (ch)) ch = is.get (); if (ch == '(') { re = octave_read_double (is); ch = is.get (); if (ch == ',') { im = octave_read_double (is); ch = is.get (); if (ch == ')') cx = Complex (re, im); else is.setstate (std::ios::failbit); } else if (ch == ')') cx = re; else is.setstate (std::ios::failbit); } else { is.putback (ch); cx = octave_read_double (is); } return cx; } void octave_write_double (std::ostream& os, double d) { if (lo_ieee_is_NA (d)) os << "NA"; else if (lo_ieee_isnan (d)) os << "NaN"; else if (lo_ieee_isinf (d)) os << (d < 0 ? "-Inf" : "Inf"); else os << d; } void octave_write_complex (std::ostream& os, const Complex& c) { os << "("; octave_write_double (os, real (c)); os << ","; octave_write_double (os, imag (c)); os << ")"; } static inline float read_float_inf_nan_na (std::istream& is, char c, char sign = '+') { float d = 0.0; switch (c) { case 'i': case 'I': { c = is.get (); if (c == 'n' || c == 'N') { c = is.get (); if (c == 'f' || c == 'F') d = sign == '-' ? -octave_Inf : octave_Inf; else is.putback (c); } else is.putback (c); } break; case 'n': case 'N': { c = is.get (); if (c == 'a' || c == 'A') { c = is.get (); if (c == 'n' || c == 'N') d = octave_NaN; else { is.putback (c); d = octave_NA; } } else is.putback (c); } break; default: abort (); } return d; } float octave_read_float (std::istream& is) { float d = 0.0; char c1 = ' '; while (isspace (c1)) c1 = is.get (); switch (c1) { case '-': { char c2 = 0; c2 = is.get (); if (c2 == 'i' || c2 == 'I') d = read_float_inf_nan_na (is, c2, c1); else { is.putback (c2); is.putback (c1); is >> d; } } break; case '+': { char c2 = 0; c2 = is.get (); if (c2 == 'i' || c2 == 'I') d = read_float_inf_nan_na (is, c2, c1); else { is.putback (c2); is.putback (c1); is >> d; } } break; case 'i': case 'I': case 'n': case 'N': d = read_float_inf_nan_na (is, c1); break; default: is.putback (c1); is >> d; } return d; } FloatComplex octave_read_float_complex (std::istream& is) { float re = 0.0, im = 0.0; FloatComplex cx = 0.0; char ch = ' '; while (isspace (ch)) ch = is.get (); if (ch == '(') { re = octave_read_float (is); ch = is.get (); if (ch == ',') { im = octave_read_float (is); ch = is.get (); if (ch == ')') cx = FloatComplex (re, im); else is.setstate (std::ios::failbit); } else if (ch == ')') cx = re; else is.setstate (std::ios::failbit); } else { is.putback (ch); cx = octave_read_float (is); } return cx; } void octave_write_float (std::ostream& os, float d) { if (lo_ieee_is_NA (d)) os << "NA"; else if (lo_ieee_isnan (d)) os << "NaN"; else if (lo_ieee_isinf (d)) os << (d < 0 ? "-Inf" : "Inf"); else os << d; } void octave_write_float_complex (std::ostream& os, const FloatComplex& c) { os << "("; octave_write_float (os, real (c)); os << ","; octave_write_float (os, imag (c)); os << ")"; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */