Mercurial > hg > octave-lyh
view scripts/statistics/base/mean.m @ 11540:b0ef6f28e09a
deprecate krylovb function
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 15 Jan 2011 03:40:32 -0500 |
parents | fd0a3ac60b0e |
children | c792872f8942 |
line wrap: on
line source
## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} mean (@var{x}) ## @deftypefnx {Function File} {} mean (@var{x}, @var{dim}) ## @deftypefnx {Function File} {} mean (@var{x}, @var{opt}) ## @deftypefnx {Function File} {} mean (@var{x}, @var{dim}, @var{opt}) ## Compute the mean of the elements of the vector @var{x}. ## @tex ## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$ ## @end tex ## @ifnottex ## ## @example ## mean (x) = SUM_i x(i) / N ## @end example ## ## @end ifnottex ## If @var{x} is a matrix, compute the mean for each column and return them ## in a row vector. ## ## The optional argument @var{opt} selects the type of mean to compute. ## The following options are recognized: ## ## @table @code ## @item "a" ## Compute the (ordinary) arithmetic mean. [default] ## ## @item "g" ## Compute the geometric mean. ## ## @item "h" ## Compute the harmonic mean. ## @end table ## ## If the optional argument @var{dim} is given, operate along this dimension. ## ## Both @var{dim} and @var{opt} are optional. If both are supplied, ## either may appear first. ## @seealso{median,mode} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Compute arithmetic, geometric, and harmonic mean function y = mean (x, opt1, opt2) if (nargin < 1 || nargin > 3) print_usage (); endif if (!isnumeric (x)) error ("mean: X must be a numeric vector or matrix"); endif need_dim = 0; if (nargin == 1) opt = "a"; need_dim = 1; elseif (nargin == 2) if (ischar (opt1)) opt = opt1; need_dim = 1; else dim = opt1; opt = "a"; endif elseif (nargin == 3) if (ischar (opt1)) opt = opt1; dim = opt2; elseif (ischar (opt2)) opt = opt2; dim = opt1; else error ("mean: OPT must be a string"); endif else print_usage (); endif nd = ndims (x); sz = size (x); if (need_dim) ## Find the first non-singleton dimension. dim = find (sz > 1, 1); if (isempty (dim)) dim = 1; endif endif if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("mean: DIM must be an integer and a valid dimension"); endif if (dim > nd) n = 1; else n = sz(dim); endif if (strcmp (opt, "a")) y = sum (x, dim) / n; elseif (strcmp (opt, "g")) y = prod (x, dim) .^ (1/n); elseif (strcmp (opt, "h")) y = n ./ sum (1 ./ x, dim); else error ("mean: option `%s' not recognized", opt); endif endfunction %!test %! x = -10:10; %! y = x'; %! z = [y, y+10]; %! assert(mean (x) == 0); %! assert(mean (y) == 0); %! assert(mean (z) == [0, 10]); %!assert(mean ([2 8], 'g'), 4); %!assert(mean ([4 4 2], 'h'), 3); %% Test input validation %!error mean (); %!error mean (1, 2, 3, 4); %!error mean ({1:5}); %!error mean (true(1, 5)); %!error mean (1, 2, 3); %!error mean (1, ones(2,2)); %!error mean (1, 1.5); %!error mean (1, 0); %!error mean (1, 3); %!error mean (1, 'b');