Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/dmperm.cc @ 7520:b166043585a8
use 0 instead of NULL
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 22 Feb 2008 16:44:03 -0500 |
parents | f5005d9510f4 |
children | fa78cb8d8a5c |
line wrap: on
line source
/* Copyright (C) 2005, 2006, 2007 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" #include "oct-sparse.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "SparseQR.h" #include "SparseCmplxQR.h" #ifdef IDX_TYPE_LONG #define CXSPARSE_NAME(name) cs_dl ## name #else #define CXSPARSE_NAME(name) cs_di ## name #endif static RowVector put_int (octave_idx_type *p, octave_idx_type n) { RowVector ret (n); for (octave_idx_type i = 0; i < n; i++) ret.xelem(i) = p[i] + 1; return ret; } #if HAVE_CXSPARSE static octave_value_list dmperm_internal (bool rank, const octave_value arg, int nargout) { octave_value_list retval; octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); SparseMatrix m; SparseComplexMatrix cm; CXSPARSE_NAME () csm; csm.m = nr; csm.n = nc; csm.x = 0; csm.nz = -1; if (arg.is_real_type ()) { m = arg.sparse_matrix_value (); csm.nzmax = m.nnz(); csm.p = m.xcidx (); csm.i = m.xridx (); } else { cm = arg.sparse_complex_matrix_value (); csm.nzmax = cm.nnz(); csm.p = cm.xcidx (); csm.i = cm.xridx (); } if (!error_state) { if (nargout <= 1 || rank) { #if defined(CS_VER) && (CS_VER >= 2) octave_idx_type *jmatch = CXSPARSE_NAME (_maxtrans) (&csm, 0); #else octave_idx_type *jmatch = CXSPARSE_NAME (_maxtrans) (&csm); #endif if (rank) { octave_idx_type r = 0; for (octave_idx_type i = 0; i < nc; i++) if (jmatch[nr+i] >= 0) r++; retval(0) = static_cast<double>(r); } else retval(0) = put_int (jmatch + nr, nc); CXSPARSE_NAME (_free) (jmatch); } else { #if defined(CS_VER) && (CS_VER >= 2) CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm, 0); #else CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm); #endif //retval(5) = put_int (dm->rr, 5); //retval(4) = put_int (dm->cc, 5); #if defined(CS_VER) && (CS_VER >= 2) retval(3) = put_int (dm->s, dm->nb+1); retval(2) = put_int (dm->r, dm->nb+1); retval(1) = put_int (dm->q, nc); retval(0) = put_int (dm->p, nr); #else retval(3) = put_int (dm->S, dm->nb+1); retval(2) = put_int (dm->R, dm->nb+1); retval(1) = put_int (dm->Q, nc); retval(0) = put_int (dm->P, nr); #endif CXSPARSE_NAME (_dfree) (dm); } } return retval; } #endif DEFUN_DLD (dmperm, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} dmperm (@var{s})\n\ @deftypefnx {Loadable Function} {[@var{p}, @var{q}, @var{r}, @var{s}] =} dmperm (@var{s})\n\ \n\ @cindex Dulmage-Mendelsohn decomposition\n\ Perform a Dulmage-Mendelsohn permutation on the sparse matrix @var{s}.\n\ With a single output argument @dfn{dmperm} performs the row permutations\n\ @var{p} such that @code{@var{s} (@var{p},:)} has no zero elements on the\n\ diagonal.\n\ \n\ Called with two or more output arguments, returns the row and column\n\ permutations, such that @code{@var{s} (@var{p}, @var{q})} is in block\n\ triangular form. The values of @var{r} and @var{s} define the boundaries\n\ of the blocks. If @var{s} is square then @code{@var{r} == @var{s}}.\n\ \n\ The method used is described in: A. Pothen & C.-J. Fan. Computing the block\n\ triangular form of a sparse matrix. ACM Trans. Math. Software,\n\ 16(4):303-324, 1990.\n\ @seealso{colamd, ccolamd}\n\ @end deftypefn") { int nargin = args.length(); octave_value_list retval; if (nargin != 1) { print_usage (); return retval; } #if HAVE_CXSPARSE retval = dmperm_internal (false, args(0), nargout); #else error ("dmperm: not available in this version of Octave"); #endif return retval; } /* %!testif HAVE_CXSPARSE %! n=20; %! a=speye(n,n);a=a(randperm(n),:); %! assert(a(dmperm(a),:),speye(n)) %!testif HAVE_CXSPARSE %! n=20; %! d=0.2; %! a=tril(sprandn(n,n,d),-1)+speye(n,n); %! a=a(randperm(n),randperm(n)); %! [p,q,r,s]=dmperm(a); %! assert(tril(a(p,q),-1),sparse(n,n)) */ DEFUN_DLD (sprank, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} sprank (@var{s})\n\ \n\ @cindex Structural Rank\n\ Calculates the structural rank of a sparse matrix @var{s}. Note that\n\ only the structure of the matrix is used in this calculation based on\n\ a Dulmage-Mendelsohn to block triangular form. As such the numerical\n\ rank of the matrix @var{s} is bounded by @code{sprank (@var{s}) >=\n\ rank (@var{s})}. Ignoring floating point errors @code{sprank (@var{s}) ==\n\ rank (@var{s})}.\n\ @seealso{dmperm}\n\ @end deftypefn") { int nargin = args.length(); octave_value_list retval; if (nargin != 1) { print_usage (); return retval; } #if HAVE_CXSPARSE retval = dmperm_internal (true, args(0), nargout); #else error ("sprank: not available in this version of Octave"); #endif return retval; } /* %!error(sprank(1,2)); %!testif HAVE_CXSPARSE %! assert(sprank(speye(20)), 20) %!testif HAVE_CXSPARSE %! assert(sprank([1,0,2,0;2,0,4,0]),2) */ /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */