Mercurial > hg > octave-lyh
view scripts/plot/slice.m @ 16950:b34202b24212
fplot.m: Overhaul function for Matlab compatibility and performance (bug #38961).
* scripts/plot/fplot.m: Add ability to specify n,tol,fmt in any order and
simultaneously. Return data rather than plotting it if asked. Use
additional test on progress of algorithm to decide whether to quit. Add
%!demo and %!tests.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 11 Jul 2013 09:25:54 -0700 |
parents | 6239f5806c26 |
children | f8b485d09ac6 |
line wrap: on
line source
## Copyright (C) 2007-2012 Kai Habel, David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method}) ## Plot slices of 3-D data/scalar fields. Each element of the 3-dimensional ## array @var{v} represents a scalar value at a location given by the ## parameters @var{x}, @var{y}, and @var{z}. The parameters @var{x}, ## @var{x}, and @var{z} are either 3-dimensional arrays of the same size ## as the array @var{v} in the "meshgrid" format or vectors. The ## parameters @var{xi}, etc. respect a similar format to @var{x}, etc., ## and they represent the points at which the array @var{vi} is ## interpolated using interp3. The vectors @var{sx}, @var{sy}, and ## @var{sz} contain points of orthogonal slices of the respective axes. ## ## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be ## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and ## @code{z = 1:size (@var{v}, 3)}. ## ## @var{Method} is one of: ## ## @table @asis ## @item "nearest" ## Return the nearest neighbor. ## ## @item "linear" ## Linear interpolation from nearest neighbors. ## ## @item "cubic" ## Cubic interpolation from four nearest neighbors (not implemented yet). ## ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is @code{"linear"}. ## ## The optional return value @var{h} is a graphics handle to the created ## surface object. ## ## Examples: ## ## @example ## @group ## [x, y, z] = meshgrid (linspace (-8, 8, 32)); ## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); ## slice (x, y, z, v, [], 0, []); ## [xi, yi] = meshgrid (linspace (-7, 7)); ## zi = xi + yi; ## slice (x, y, z, v, xi, yi, zi); ## @end group ## @end example ## @seealso{interp3, surface, pcolor} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function h = slice (varargin) method = "linear"; nargs = nargin; if (ischar (varargin{end})) method = varargin{end}; nargs -= 1; endif if (nargs == 4) v = varargin{1}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif [nx, ny, nz] = size (v); [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz); sx = varargin{2}; sy = varargin{3}; sz = varargin{4}; elseif (nargs == 7) v = varargin{4}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif x = varargin{1}; y = varargin{2}; z = varargin{3}; if (isvector (x) && isvector (y) && isvector (z)) [x, y, z] = meshgrid (x, y, z); elseif (ndims (x) == 3 && size_equal (x, y, z)) ## Do nothing. else error ("slice: X, Y, Z size mismatch"); endif sx = varargin{5}; sy = varargin{6}; sz = varargin{7}; else print_usage (); endif if (any ([isvector(sx), isvector(sy), isvector(sz)])) have_sval = true; elseif (ndims (sx) == 2 && size_equal (sx, sy, sz)) have_sval = false; else error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)"); endif newplot (); ax = gca (); sidx = 1; maxv = max (v(:)); minv = min (v(:)); set (ax, "clim", [minv, maxv]); if (have_sval) ns = length (sx) + length (sy) + length (sz); hs = zeros (ns,1); [ny, nx, nz] = size (v); if (length (sz) > 0) for i = 1:length (sz) [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), squeeze (y(:,1,1)), sz(i)); vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz); endfor endif if (length (sy) > 0) for i = length (sy):-1:1 [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), sy(i), squeeze (z(1,1,:))); vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (xi), squeeze (sy(i) * ones (size (zi))), squeeze (zi), vy); endfor endif if (length (sx) > 0) for i = length (sx):-1:1 [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:))); vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))), squeeze (yi), squeeze(zi), vx); endfor endif else vi = interp3 (x, y, z, v, sx, sy, sz); tmp = surface (sx, sy, sz, vi); endif if (! ishold ()) set (ax, "view", [-37.5, 30.0], "box", "off", "xgrid", "on", "ygrid", "on", "zgrid", "on"); endif if (nargout > 0) h = tmp; endif endfunction %!demo %! clf; %! colormap ('default'); %! [x, y, z] = meshgrid (linspace (-8, 8, 32)); %! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); %! slice (x, y, z, v, [], 0, []); %!demo %! clf; %! colormap ('default'); %! [x, y, z] = meshgrid (linspace (-8, 8, 32)); %! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); %! [xi, yi] = meshgrid (linspace (-7, 7)); %! zi = xi + yi; %! slice (x, y, z, v, xi, yi, zi);