view scripts/plot/slice.m @ 16950:b34202b24212

fplot.m: Overhaul function for Matlab compatibility and performance (bug #38961). * scripts/plot/fplot.m: Add ability to specify n,tol,fmt in any order and simultaneously. Return data rather than plotting it if asked. Use additional test on progress of algorithm to decide whether to quit. Add %!demo and %!tests.
author Rik <rik@octave.org>
date Thu, 11 Jul 2013 09:25:54 -0700
parents 6239f5806c26
children f8b485d09ac6
line wrap: on
line source

## Copyright (C) 2007-2012 Kai Habel, David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {@var{h} =} slice (@dots{})
## @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method})
## Plot slices of 3-D data/scalar fields.  Each element of the 3-dimensional
## array @var{v} represents a scalar value at a location given by the
## parameters @var{x}, @var{y}, and @var{z}.  The parameters @var{x},
## @var{x}, and @var{z} are either 3-dimensional arrays of the same size
## as the array @var{v} in the "meshgrid" format or vectors.  The
## parameters @var{xi}, etc. respect a similar format to @var{x}, etc.,
## and they represent the points at which the array @var{vi} is
## interpolated using interp3.  The vectors @var{sx}, @var{sy}, and
## @var{sz} contain points of orthogonal slices of the respective axes.
##
## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be
## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
## @code{z = 1:size (@var{v}, 3)}.
##
## @var{Method} is one of:
##
## @table @asis
## @item "nearest"
## Return the nearest neighbor.
##
## @item "linear"
## Linear interpolation from nearest neighbors.
##
## @item "cubic"
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item "spline"
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @code{"linear"}.
##
## The optional return value @var{h} is a graphics handle to the created
## surface object.
##
## Examples:
##
## @example
## @group
## [x, y, z] = meshgrid (linspace (-8, 8, 32));
## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
## slice (x, y, z, v, [], 0, []);
## [xi, yi] = meshgrid (linspace (-7, 7));
## zi = xi + yi;
## slice (x, y, z, v, xi, yi, zi);
## @end group
## @end example
## @seealso{interp3, surface, pcolor}
## @end deftypefn

## Author: Kai Habel <kai.habel@gmx.de>

function h = slice (varargin)

  method = "linear";
  nargs = nargin;

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs -= 1;
  endif

  if (nargs == 4)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("slice: expect 3-dimensional array of values");
    endif
    [nx, ny, nz] = size (v);
    [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz);
    sx = varargin{2};
    sy = varargin{3};
    sz = varargin{4};
  elseif (nargs == 7)
    v = varargin{4};
    if (ndims (v) != 3)
      error ("slice: expect 3-dimensional array of values");
    endif
    x = varargin{1};
    y = varargin{2};
    z = varargin{3};
    if (isvector (x) && isvector (y) && isvector (z))
      [x, y, z] = meshgrid (x, y, z);
    elseif (ndims (x) == 3 && size_equal (x, y, z))
      ## Do nothing.
    else
      error ("slice: X, Y, Z size mismatch");
    endif
    sx = varargin{5};
    sy = varargin{6};
    sz = varargin{7};
  else
    print_usage ();
  endif

  if (any ([isvector(sx), isvector(sy), isvector(sz)]))
    have_sval = true;
  elseif (ndims (sx) == 2 && size_equal (sx, sy, sz))
    have_sval = false;
  else
    error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)");
  endif

  newplot ();
  ax = gca ();
  sidx = 1;
  maxv = max (v(:));
  minv = min (v(:));
  set (ax, "clim", [minv, maxv]);

  if (have_sval)
    ns = length (sx) + length (sy) + length (sz);
    hs = zeros (ns,1);
    [ny, nx, nz] = size (v);
    if (length (sz) > 0)
      for i = 1:length (sz)
        [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)),
                                 squeeze (y(:,1,1)), sz(i));
        vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
        tmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz);
      endfor
    endif

    if (length (sy) > 0)
      for i = length (sy):-1:1
        [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), sy(i), squeeze (z(1,1,:)));
        vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
        tmp(sidx++) = surface (squeeze (xi),
                               squeeze (sy(i) * ones (size (zi))),
                               squeeze (zi), vy);
      endfor
    endif

    if (length (sx) > 0)
      for i = length (sx):-1:1
        [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:)));
        vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
        tmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))),
                               squeeze (yi), squeeze(zi), vx);
      endfor
    endif
  else
    vi = interp3 (x, y, z, v, sx, sy, sz);
    tmp = surface (sx, sy, sz, vi);
  endif

  if (! ishold ())
    set (ax, "view", [-37.5, 30.0], "box", "off", "xgrid", "on",
         "ygrid", "on", "zgrid", "on");
  endif

  if (nargout > 0)
    h = tmp;
  endif

endfunction


%!demo
%! clf;
%! colormap ('default');
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! slice (x, y, z, v, [], 0, []);

%!demo
%! clf;
%! colormap ('default');
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! [xi, yi] = meshgrid (linspace (-7, 7));
%! zi = xi + yi;
%! slice (x, y, z, v, xi, yi, zi);