view scripts/plot/specular.m @ 16950:b34202b24212

fplot.m: Overhaul function for Matlab compatibility and performance (bug #38961). * scripts/plot/fplot.m: Add ability to specify n,tol,fmt in any order and simultaneously. Return data rather than plotting it if asked. Use additional test on progress of algorithm to decide whether to quit. Add %!demo and %!tests.
author Rik <rik@octave.org>
date Thu, 11 Jul 2013 09:25:54 -0700
parents 72c96de7a403
children eaab03308c0b
line wrap: on
line source

## Copyright (C) 2009-2012 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv})
## @deftypefnx {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}, @var{se})
## Calculate specular reflection strength of a surface defined by the normal
## vector elements @var{sx}, @var{sy}, @var{sz} using Phong's approximation.
## The light and view vectors can be specified using parameter @var{lv} and
## @var{vv} respectively.
## Both can be given as 2-element vectors [azimuth, elevation] in degrees or as
## 3-element
## vector [x, y, z].  An optional 6th argument describes the specular exponent
## (spread) @var{se}.
## @seealso{surfl, diffuse}
## @end deftypefn

## Author: Kai Habel <kai.habel@gmx.de>

function retval = specular (sx, sy, sz, lv, vv, se)

  if (nargin < 5 || nargin > 6)
    print_usage ();
  endif

  ## Checks for specular exponent (se).
  if (nargin < 6)
    se = 10;
  else
    if (!isnumeric (se) || numel (se) != 1 || se <= 0)
      error ("specular: exponent must be positive scalar");
    endif
  endif

  ## Checks for normal vector.
  if (!size_equal (sx, sy, sz))
    error ("specular: SX, SY, and SZ must have same size");
  endif

  ## Check for light vector (lv) argument.
  if (length (lv) < 2 || length (lv) > 3)
    error ("specular: light vector LV must be a 2- or 3-element vector");
  elseif (length (lv) == 2)
    [lv(1), lv(2), lv(3)] = sph2cart (lv(1) * pi/180, lv(2) * pi/180, 1.0);
  endif

  ## Check for view vector (vv) argument.
  if (length (vv) < 2 || length (lv) > 3)
    error ("specular: view vector VV must be a 2- or 3-element vector");
  elseif (length (vv) == 2)
    [vv(1), vv(2), vv(3)] = sph2cart (vv(1) * pi / 180, vv(2) * pi / 180, 1.0);
  endif

  ## Normalize view and light vector.
  if (sum (abs (lv)) > 0)
    lv  /= norm (lv);
  endif
  if (sum (abs (vv)) > 0)
    vv  /= norm (vv);
  endif

  ## Calculate normal vector lengths and dot-products.
  ns = sqrt (sx.^2 + sy.^2 + sz.^2);
  l_dot_n = (sx * lv(1) + sy * lv(2) + sz * lv(3)) ./ ns;
  v_dot_n = (sx * vv(1) + sy * vv(2) + sz * vv(3)) ./ ns;

  ## Calculate specular reflection using Phong's approximation.
  retval = 2 * l_dot_n .* v_dot_n - dot (lv, vv);

  ## Set zero if light is on the other side.
  retval(l_dot_n < 0) = 0;

  ## Allow postive values only.
  retval(retval < 0) = 0;
  retval = retval .^ se;

endfunction