Mercurial > hg > octave-lyh
view scripts/plot/surfnorm.m @ 7191:b48a21816f2e
[project @ 2007-11-26 21:24:32 by jwe]
author | jwe |
---|---|
date | Mon, 26 Nov 2007 21:24:33 +0000 |
parents | e8d953d03f6a |
children | a730e47fda4d |
line wrap: on
line source
## Copyright (C) 2007 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} surfnorm (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {} surfnorm (@var{z}) ## @deftypefnx {Function File} {[@var{nx}, @var{ny}, @var{nz}] =} surfnorm (@dots{}) ## @deftypefnx {Function File} {} surfnorm (@var{h}, @dots{}) ## Find the vectors normal to a meshgridded surface. The meshed gridded ## surface is defined by @var{x}, @var{y}, and @var{z}. If @var{x} and ## @var{y} are not defined, then it is assumed that they are given by ## ## @example ## [@var{x}, @var{y}] = meshgrid (1:size(@var{z}, 1), ## 1:size(@var{z}, 2)); ## @end example ## ## If no return arguments are requested, a surface plot with the normal ## vectors to the surface is plotted. Otherwise the componets of the normal ## vectors at the mesh gridded points are returned in @var{nx}, @var{ny}, ## and @var{nz}. ## ## The normal vectors are calculated by taking the cross product of the ## diagonals of eash of teh quadrilaterals in the meshgrid to find the ## normal vectors of the centers of these quadrilaterals. The four nearest ## normal vectors to the meshgrid points are then averaged to obtain the ## normal to the surface at the meshgridded points. ## ## An example of the use of @code{surfnorm} is ## ## @example ## surfnorm (peaks (25)); ## @end example ## @seealso{surf, quiver3} ## @end deftypefn function varargout = surfnorm (varargin) if (nargout > 0) varargout = cell (nargout, 1); else varargout = cell (0, 0); endif if (isscalar (varargin{1}) && ishandle (varargin{1})) h = varargin {1}; if (! strcmp (get (h, "type"), "axes")) error ("surfnorm: expecting first argument to be an axes object"); endif if (nargin != 2 && nargin != 4) print_usage (); endif oldh = gca (); unwind_protect axes (h); [varargout{:}] = __surfnorm__ (h, varargin{2:end}); unwind_protect_cleanup axes (oldh); end_unwind_protect else if (nargin != 1 && nargin != 3) print_usage (); endif [varargout{:}] = __surfnorm__ (gca (), varargin{:}); endif endfunction function [Nx, Ny, Nz] = __surfnorm__ (h, varargin) if (nargin == 2) z = varargin{1}; [x, y] = meshgrid (1:size(z,1), 1:size(z,2)); ioff = 2; else x = varargin{1}; y = varargin{2}; z = varargin{3}; ioff = 4; endif if (nargout == 0) newplot (); surf (x, y, z, varargin{ioff:end}); hold on; endif ## Make life easier, and avoid having to do the extrapolation later, do ## a simpler linear extrapolation here. This is approximative, and works ## badly for closed surfaces like spheres. xx = [2 .* x(:,1) - x(:,2), x, 2 .* x(:,end) - x(:,end-1)]; xx = [2 .* xx(1,:) - xx(2,:); xx; 2 .* xx(end,:) - xx(end-1,:)]; yy = [2 .* y(:,1) - y(:,2), y, 2 .* y(:,end) - y(:,end-1)]; yy = [2 .* yy(1,:) - yy(2,:); yy; 2 .* yy(end,:) - yy(end-1,:)]; zz = [2 .* z(:,1) - z(:,2), z, 2 .* z(:,end) - z(:,end-1)]; zz = [2 .* zz(1,:) - zz(2,:); zz; 2 .* zz(end,:) - zz(end-1,:)]; u.x = xx(1:end-1,1:end-1) - xx(2:end,2:end); u.y = yy(1:end-1,1:end-1) - yy(2:end,2:end); u.z = zz(1:end-1,1:end-1) - zz(2:end,2:end); v.x = xx(1:end-1,2:end) - xx(2:end,1:end-1); v.y = yy(1:end-1,2:end) - yy(2:end,1:end-1); v.z = zz(1:end-1,2:end) - zz(2:end,1:end-1); c = cross ([u.x(:), u.y(:), u.z(:)], [v.x(:), v.y(:), v.z(:)]); w.x = reshape (c(:,1), size(u.x)); w.y = reshape (c(:,2), size(u.y)); w.z = reshape (c(:,3), size(u.z)); ## Create normal vectors as mesh vectices from normals at mesh centers nx = (w.x(1:end-1,1:end-1) + w.x(1:end-1,2:end) + w.x(2:end,1:end-1) + w.x(2:end,2:end)) ./ 4; ny = (w.y(1:end-1,1:end-1) + w.y(1:end-1,2:end) + w.y(2:end,1:end-1) + w.y(2:end,2:end)) ./ 4; nz = (w.z(1:end-1,1:end-1) + w.z(1:end-1,2:end) + w.z(2:end,1:end-1) + w.z(2:end,2:end)) ./ 4; ## Normalize the normal vectors len = sqrt (nx.^2 + ny.^2 + nz.^2); nx = nx ./ len; ny = ny ./ len; nz = nz ./ len; if (nargout == 0) plot3 ([x(:)'; x(:).' + nx(:).' ; NaN(size(x(:).'))](:), [y(:)'; y(:).' + ny(:).' ; NaN(size(y(:).'))](:), [z(:)'; z(:).' + nz(:).' ; NaN(size(z(:).'))](:), varargin{ioff:end}); else Nx = nx; Ny = ny; Nz = nz; endif endfunction %!demo %! [x, y, z] = peaks(10); %! surfnorm (x, y, z); %!demo %! surfnorm (peaks(10));