Mercurial > hg > octave-lyh
view scripts/specfun/nchoosek.m @ 7580:b4aa9ef3d3ef
Port dlmread, dlmwrite, csvread and csvwrite from octave-forge
author | David Bateman <dbateman@free.fr> |
---|---|
date | Wed, 12 Mar 2008 01:04:54 +0100 |
parents | a1dbe9d80eee |
children | cf620941af1a |
line wrap: on
line source
## Copyright (C) 2001, 2006, 2007 Rolf Fabian and Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k}) ## ## Compute the binomial coefficient or all combinations of @var{n}. ## If @var{n} is a scalar then, calculate the binomial coefficient ## of @var{n} and @var{k}, defined as ## ## @iftex ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## = {n! \over k! (n-k)!} ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) ... (n-k+1) n! ## | | = ------------------------- = --------- ## | k | k! k! (n-k)! ## \ / ## @end group ## @end example ## @end ifinfo ## ## If @var{n} is a vector generate all combinations of the elements ## of @var{n}, taken @var{k} at a time, one row per combination. The ## resulting @var{c} has size @code{[nchoosek (length (@var{n}), ## @var{k}), @var{k}]}. ## ## @seealso{bincoeff} ## @end deftypefn ## Author: Rolf Fabian <fabian@tu-cottbus.de> ## Author: Paul Kienzle <pkienzle@users.sf.net> ## FIXME -- This function is identical to bincoeff for scalar ## values, and so should probably be combined with bincoeff. function A = nchoosek (v, k) if (nargin != 2) print_usage (); endif n = length (v); if (n == 1) A = round (exp (sum (log (k+1:v)) - sum (log (2:v-k)))); elseif (k == 0) A = []; elseif (k == 1) A = v(:); elseif (k == n) A = v(:).'; else m = round (exp (sum (log (k:n-1)) - sum (log (2:n-k)))); A = [v(1)*ones(m,1), nchoosek(v(2:n),k-1); nchoosek(v(2:n),k)]; endif endfunction