Mercurial > hg > octave-lyh
view src/ov-re-mat.cc @ 5069:b9dae14b5ada
[project @ 2004-11-05 16:18:11 by jwe]
author | jwe |
---|---|
date | Fri, 05 Nov 2004 16:18:12 +0000 |
parents | 44046bbaa52c |
children | f7e39f977fe8 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "data-conv.h" #include "lo-ieee.h" #include "lo-utils.h" #include "mach-info.h" #include "mx-base.h" #include "quit.h" #include "defun.h" #include "gripes.h" #include "oct-obj.h" #include "oct-lvalue.h" #include "oct-stream.h" #include "ops.h" #include "ov-base.h" #include "ov-base-mat.h" #include "ov-base-mat.cc" #include "ov-scalar.h" #include "ov-re-mat.h" #include "ov-type-conv.h" #include "pr-output.h" #include "variables.h" #include "byte-swap.h" #include "ls-oct-ascii.h" #include "ls-utils.h" #include "ls-hdf5.h" #if ! defined (UCHAR_MAX) #define UCHAR_MAX 255 #endif template class octave_base_matrix<NDArray>; DEFINE_OCTAVE_ALLOCATOR (octave_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_matrix, "matrix", "double"); octave_value * octave_matrix::try_narrowing_conversion (void) { octave_value *retval = 0; if (matrix.nelem () == 1) retval = new octave_scalar (matrix (0)); return retval; } bool octave_matrix::valid_as_scalar_index (void) const { // XXX FIXME XXX return false; } double octave_matrix::double_value (bool) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { // XXX FIXME XXX -- is warn_fortran_indexing the right variable here? if (Vwarn_fortran_indexing) gripe_implicit_conversion ("real matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "real scalar"); return retval; } // XXX FIXME XXX Matrix octave_matrix::matrix_value (bool) const { return matrix.matrix_value (); } Complex octave_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); // XXX FIXME XXX -- maybe this should be a function, valid_as_scalar() if (rows () > 0 && columns () > 0) { // XXX FIXME XXX -- is warn_fortran_indexing the right variable here? if (Vwarn_fortran_indexing) gripe_implicit_conversion ("real matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "complex scalar"); return retval; } // XXX FIXME XXX ComplexMatrix octave_matrix::complex_matrix_value (bool) const { return ComplexMatrix (matrix.matrix_value ()); } ComplexNDArray octave_matrix::complex_array_value (bool) const { return ComplexNDArray (matrix); } charNDArray octave_matrix::char_array_value (bool) const { charNDArray retval (dims ()); int nel = numel (); for (int i = 0; i < nel; i++) retval.elem (i) = static_cast<char>(matrix.elem (i)); return retval; } streamoff_array octave_matrix::streamoff_array_value (void) const { streamoff_array retval (dims ()); int nel = numel (); for (int i = 0; i < nel; i++) { double d = matrix(i); if (D_NINT (d) == d) retval(i) = std::streamoff (static_cast<long> (d)); else { error ("conversion to streamoff_array value failed"); break; } } return retval; } octave_value octave_matrix::convert_to_str_internal (bool, bool) const { octave_value retval; dim_vector dv = dims (); int nel = dv.numel (); if (nel == 0) { char s = '\0'; retval = octave_value (&s); } else { charNDArray chm (dv); bool warned = false; for (int i = 0; i < nel; i++) { OCTAVE_QUIT; double d = matrix (i); if (xisnan (d)) { ::error ("invalid conversion from NaN to character"); return retval; } else { int ival = NINT (d); if (ival < 0 || ival > UCHAR_MAX) { // XXX FIXME XXX -- is there something // better we could do? ival = 0; if (! warned) { ::warning ("range error for conversion to character value"); warned = true; } } chm (i) = static_cast<char> (ival); } } retval = octave_value (chm, 1); } return retval; } static Matrix strip_infnan (const Matrix& m) { int nr = m.rows (); int nc = m.columns (); Matrix retval (nr, nc); int k = 0; for (int i = 0; i < nr; i++) { for (int j = 0; j < nc; j++) { double d = m (i, j); if (xisnan (d)) goto next_row; else retval (k, j) = xisinf (d) ? (d > 0 ? OCT_RBV : -OCT_RBV) : d; } k++; next_row: continue; } if (k > 0) retval.resize (k, nc); return retval; } bool octave_matrix::save_ascii (std::ostream& os, bool& infnan_warned, bool strip_nan_and_inf) { dim_vector d = dims (); if (d.length () > 2) { NDArray tmp = array_value (); if (strip_nan_and_inf) { warning ("save: Can not strip Inf or NaN values"); warning ("save: Inf or NaN values may not be reloadable"); infnan_warned = true; } else if (! infnan_warned && tmp.any_element_is_inf_or_nan ()) { warning ("save: Inf or NaN values may not be reloadable"); infnan_warned = true; } os << "# ndims: " << d.length () << "\n"; for (int i=0; i < d.length (); i++) os << " " << d (i); os << "\n" << tmp; } else { // Keep this case, rather than use generic code above for backward // compatiability. Makes load_ascii much more complex!! os << "# rows: " << rows () << "\n" << "# columns: " << columns () << "\n"; Matrix tmp = matrix_value (); if (strip_nan_and_inf) tmp = strip_infnan (tmp); else if (! infnan_warned && tmp.any_element_is_inf_or_nan ()) { warning ("save: Inf or NaN values may not be reloadable"); infnan_warned = true; } os << tmp; } return true; } bool octave_matrix::load_ascii (std::istream& is) { int mdims = 0; bool success = true; std::streampos pos = is.tellg (); if (extract_keyword (is, "ndims", mdims, true)) { if (mdims >= 0) { dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) is >> dv(i); NDArray tmp(dv); is >> tmp; if (!is) { error ("load: failed to load matrix constant"); success = false; } matrix = tmp; } else { error ("load: failed to extract number of rows and columns"); success = false; } } else { int nr = 0; int nc = 0; // re-read the same line again is.clear (); is.seekg (pos); if (extract_keyword (is, "rows", nr) && nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0) { if (nr > 0 && nc > 0) { Matrix tmp (nr, nc); is >> tmp; if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else if (nr == 0 || nc == 0) matrix = Matrix (nr, nc); else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } } return success; } bool octave_matrix::save_binary (std::ostream& os, bool& save_as_floats) { dim_vector d = dims (); if (d.length() < 1) return false; // Use negative value for ndims to differentiate with old format!! FOUR_BYTE_INT tmp = - d.length(); os.write (X_CAST (char *, &tmp), 4); for (int i=0; i < d.length (); i++) { tmp = d(i); os.write (X_CAST (char *, &tmp), 4); } NDArray m = array_value (); save_type st = LS_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else st = LS_FLOAT; } else if (d.numel () > 8192) // XXX FIXME XXX -- make this configurable. { double max_val, min_val; if (m.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } const double *mtmp = m.data (); write_doubles (os, mtmp, st, d.numel ()); return true; } bool octave_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { char tmp; FOUR_BYTE_INT mdims; if (! is.read (X_CAST (char *, &mdims), 4)) return false; if (swap) swap_bytes<4> (&mdims); if (mdims < 0) { mdims = - mdims; FOUR_BYTE_INT di; dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) { if (! is.read (X_CAST (char *, &di), 4)) return false; if (swap) swap_bytes<4> (&di); dv(i) = di; } if (! is.read (X_CAST (char *, &tmp), 1)) return false; NDArray m(dv); double *re = m.fortran_vec (); read_doubles (is, re, X_CAST (save_type, tmp), dv.numel (), swap, fmt); if (error_state || ! is) return false; matrix = m; } else { FOUR_BYTE_INT nr, nc; nr = mdims; if (! is.read (X_CAST (char *, &nc), 4)) return false; if (swap) swap_bytes<4> (&nc); if (! is.read (X_CAST (char *, &tmp), 1)) return false; Matrix m (nr, nc); double *re = m.fortran_vec (); int len = nr * nc; read_doubles (is, re, X_CAST (save_type, tmp), len, swap, fmt); if (error_state || ! is) return false; matrix = m; } return true; } #if defined (HAVE_HDF5) bool octave_matrix::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); int rank = dv.length (); hid_t space_hid = -1, data_hid = -1; bool retval = true; NDArray m = array_value (); OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); // Octave uses column-major, while HDF5 uses row-major ordering for (int i = 0; i < rank; i++) hdims[i] = dv (rank-i-1); space_hid = H5Screate_simple (rank, hdims, 0); if (space_hid < 0) return false; hid_t save_type_hid = H5T_NATIVE_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else save_type_hid = H5T_NATIVE_FLOAT; } #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { double max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); return false; } double *mtmp = m.fortran_vec (); retval = H5Dwrite (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, mtmp) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); return retval; } bool octave_matrix::load_hdf5 (hid_t loc_id, const char *name, bool /* have_h5giterate_bug */) { bool retval = false; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); hid_t data_hid = H5Dopen (loc_id, name); hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank < 1) { H5Sclose (space_id); H5Dclose (data_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_id, hdims, maxdims); // Octave uses column-major, while HDF5 uses row-major ordering if (rank == 1) { dv.resize (2); dv(0) = 1; dv(1) = hdims[0]; } else { dv.resize (rank); for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--) dv(j) = hdims[i]; } NDArray m (dv); double *re = m.fortran_vec (); if (H5Dread (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, re) >= 0) { retval = true; matrix = m; } H5Sclose (space_id); H5Dclose (data_hid); return retval; } #endif void octave_matrix::print_raw (std::ostream& os, bool pr_as_read_syntax) const { octave_print_internal (os, matrix, pr_as_read_syntax, current_print_indent_level ()); } DEFUN (double, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} double (@var{x})\n\ Convert @var{x} to double precision type.\n\ @end deftypefn") { OCTAVE_TYPE_CONV_BODY3 (double, octave_matrix, octave_scalar); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */