Mercurial > hg > octave-lyh
view src/mappers.cc @ 7635:ba7a3e20ee3d
add -struct modifier to save
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Tue, 25 Mar 2008 15:29:26 -0400 |
parents | 8a939b217863 |
children | 99c410f7f0b0 |
line wrap: on
line source
/* Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cctype> #include <cfloat> #include "lo-ieee.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "variables.h" DEFUN (abs, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} abs (@var{z})\n\ Compute the magnitude of @var{z}, defined as\n\ @iftex\n\ @tex\n\ $|z| = \\sqrt{x^2 + y^2}$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ |@var{z}| = @code{sqrt (x^2 + y^2)}.\n\ @end ifinfo\n\ \n\ For example,\n\ \n\ @example\n\ @group\n\ abs (3 + 4i)\n\ @result{} 5\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).abs (); else print_usage (); return retval; } DEFUN (acos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acos (@var{x})\n\ Compute the inverse cosine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acos (); else print_usage (); return retval; } DEFUN (acosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acosh (@var{x})\n\ Compute the inverse hyperbolic cosine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acosh (); else print_usage (); return retval; } DEFUN (angle, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} angle (@var{z})\n\ See arg.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } DEFUN (arg, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} arg (@var{z})\n\ @deftypefnx {Mapping Function} {} angle (@var{z})\n\ Compute the argument of @var{z}, defined as\n\ @iftex\n\ @tex\n\ $\\theta = \\tan^{-1}(y/x)$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ @var{theta} = @code{atan (@var{y}/@var{x})}.\n\ @end ifinfo\n\ @noindent\n\ in radians. \n\ \n\ For example,\n\ \n\ @example\n\ @group\n\ arg (3 + 4i)\n\ @result{} 0.92730\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } DEFUN (asin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asin (@var{x})\n\ Compute the inverse sine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asin (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = [0, pi/6, pi/4, pi/3, pi/2, pi/3, pi/4, pi/6, 0]; %! x = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]; %! assert(all (abs (asin (x) - v) < sqrt (eps))); %!error asin (); %!error asin (1, 2); */ DEFUN (asinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asinh (@var{x})\n\ Compute the inverse hyperbolic sine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asinh (); else print_usage (); return retval; } DEFUN (atan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atan (@var{x})\n\ Compute the inverse tangent of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atan (); else print_usage (); return retval; } DEFUN (atanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atanh (@var{x})\n\ Compute the inverse hyperbolic tangent of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atanh (); else print_usage (); return retval; } DEFUN (ceil, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ceil (@var{x})\n\ Return the smallest integer not less than @var{x}. If @var{x} is\n\ complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).ceil (); else print_usage (); return retval; } DEFUN (conj, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} conj (@var{z})\n\ Return the complex conjugate of @var{z}, defined as\n\ @iftex\n\ @tex\n\ $\\bar{z} = x - iy$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ @code{conj (@var{z})} = @var{x} - @var{i}@var{y}.\n\ @end ifinfo\n\ @seealso{real, imag}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).conj (); else print_usage (); return retval; } DEFUN (cos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cos (@var{x})\n\ Compute the cosine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cos (); else print_usage (); return retval; } DEFUN (cosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cosh (@var{x})\n\ Compute the hyperbolic cosine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cosh (); else print_usage (); return retval; } DEFUN (erf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erf (@var{z})\n\ Computes the error function,\n\ @iftex\n\ @tex\n\ $$\n\ {\\rm erf} (z) = {2 \\over \\sqrt{\\pi}}\\int_0^z e^{-t^2} dt\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @smallexample\n\ z\n\ /\n\ erf (z) = (2/sqrt (pi)) | e^(-t^2) dt\n\ /\n\ t=0\n\ @end smallexample\n\ @end ifinfo\n\ @seealso{erfc, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erf (); else print_usage (); return retval; } DEFUN (erfc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfc (@var{z})\n\ Computes the complementary error function,\n\ @iftex\n\ @tex\n\ $1 - {\\rm erf} (z)$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ @code{1 - erf (@var{z})}.\n\ @end ifinfo\n\ @seealso{erf, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfc (); else print_usage (); return retval; } DEFUN (exp, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} exp (@var{x})\n\ Compute the exponential of @var{x}. To compute the matrix exponential,\n\ see @ref{Linear Algebra}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).exp (); else print_usage (); return retval; } DEFUN (finite, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} finite (@var{x})\n\ Return 1 for elements of @var{x} that are finite values and zero\n\ otherwise. For example,\n\ \n\ @example\n\ @group\n\ finite ([13, Inf, NA, NaN])\n\ @result{} [ 1, 0, 0, 0 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).finite (); else print_usage (); return retval; } DEFUN (fix, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} fix (@var{x})\n\ Truncate @var{x} toward zero. If @var{x} is complex, return\n\ @code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).fix (); else print_usage (); return retval; } DEFUN (floor, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} floor (@var{x})\n\ Return the largest integer not greater than @var{x}. If @var{x} is\n\ complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).floor (); else print_usage (); return retval; } DEFUN (gamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} gamma (@var{z})\n\ Computes the Gamma function,\n\ @iftex\n\ @tex\n\ $$\n\ \\Gamma (z) = \\int_0^\\infty t^{z-1} e^{-t} dt.\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ infinity\n\ /\n\ gamma (z) = | t^(z-1) exp (-t) dt.\n\ /\n\ t=0\n\ @end example\n\ @end ifinfo\n\ @seealso{gammai, lgamma}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).gamma (); else print_usage (); return retval; } DEFUN (imag, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} imag (@var{z})\n\ Return the imaginary part of @var{z} as a real number.\n\ @seealso{real, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).imag (); else print_usage (); return retval; } DEFUNX ("isalnum", Fisalnum, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalnum (@var{s})\n\ Return 1 for characters that are letters or digits (@code{isalpha\n\ (@var{s})} or @code{isdigit (@var{s})} is true).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalnum (); else print_usage (); return retval; } DEFUNX ("isalpha", Fisalpha, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalpha (@var{s})\n\ @deftypefnx {Mapping Function} {} isletter (@var{s})\n\ Return true for characters that are letters (@code{isupper (@var{s})}\n\ or @code{islower (@var{s})} is true).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalpha (); else print_usage (); return retval; } DEFUNX ("isascii", Fisascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isascii (@var{s})\n\ Return 1 for characters that are ASCII (in the range 0 to 127 decimal).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisascii (); else print_usage (); return retval; } DEFUNX ("iscntrl", Fiscntrl, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} iscntrl (@var{s})\n\ Return 1 for control characters.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xiscntrl (); else print_usage (); return retval; } DEFUNX ("isdigit", Fisdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isdigit (@var{s})\n\ Return 1 for characters that are decimal digits.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisdigit (); else print_usage (); return retval; } DEFUN (isinf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isinf (@var{x})\n\ Return 1 for elements of @var{x} that are infinite and zero\n\ otherwise. For example,\n\ \n\ @example\n\ @group\n\ isinf ([13, Inf, NA, NaN])\n\ @result{} [ 0, 1, 0, 0 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isinf (); else print_usage (); return retval; } DEFUNX ("isgraph", Fisgraph, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isgraph (@var{s})\n\ Return 1 for printable characters (but not the space character).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisgraph (); else print_usage (); return retval; } DEFUNX ("islower", Fislower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} islower (@var{s})\n\ Return 1 for characters that are lower case letters.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xislower (); else print_usage (); return retval; } DEFUN (isna, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isna (@var{x})\n\ Return 1 for elements of @var{x} that are NA (missing) values and zero\n\ otherwise. For example,\n\ \n\ @example\n\ @group\n\ isna ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 0 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isna (); else print_usage (); return retval; } DEFUN (isnan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isnan (@var{x})\n\ Return 1 for elements of @var{x} that are NaN values and zero\n\ otherwise. NA values are also considered NaN values. For example,\n\ \n\ @example\n\ @group\n\ isnan ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 1 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isnan (); else print_usage (); return retval; } DEFUNX ("isprint", Fisprint, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isprint (@var{s})\n\ Return 1 for printable characters (including the space character).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisprint (); else print_usage (); return retval; } DEFUNX ("ispunct", Fispunct, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ispunct (@var{s})\n\ Return 1 for punctuation characters.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xispunct (); else print_usage (); return retval; } DEFUNX ("isspace", Fisspace, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isspace (@var{s})\n\ Return 1 for whitespace characters (space, formfeed, newline,\n\ carriage return, tab, and vertical tab).\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisspace (); else print_usage (); return retval; } DEFUNX ("isupper", Fisupper, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isupper (@var{s})\n\ Return 1 for upper case letters.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisupper (); else print_usage (); return retval; } DEFUNX ("isxdigit", Fisxdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isxdigit (@var{s})\n\ Return 1 for characters that are hexadecimal digits.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisxdigit (); else print_usage (); return retval; } DEFUN (lgamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} lgamma (@var{x})\n\ @deftypefnx {Mapping Function} {} gammaln (@var{x})\n\ Return the natural logarithm of the gamma function of @var{x}.\n\ @seealso{gamma, gammai}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).lgamma (); else print_usage (); return retval; } DEFUN (log, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log (@var{x})\n\ Compute the natural logarithm for each element of @var{x}. To compute the\n\ matrix logarithm, see @ref{Linear Algebra}.\n\ @seealso{log2, log10, logspace, exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log (); else print_usage (); return retval; } DEFUN (log10, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log10 (@var{x})\n\ Compute the base-10 logarithm for each element of @var{x}.\n\ @seealso{log, log2, logspace, exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log10 (); else print_usage (); return retval; } DEFUN (real, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} real (@var{z})\n\ Return the real part of @var{z}.\n\ @seealso{imag, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).real (); else print_usage (); return retval; } DEFUN (round, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} round (@var{x})\n\ Return the integer nearest to @var{x}. If @var{x} is complex, return\n\ @code{round (real (@var{x})) + round (imag (@var{x})) * I}.\n\ @seealso{rem}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).round (); else print_usage (); return retval; } DEFUN (sign, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sign (@var{x})\n\ Compute the @dfn{signum} function, which is defined as\n\ @iftex\n\ @tex\n\ $$\n\ {\\rm sign} (@var{x}) = \\cases{1,&$x>0$;\\cr 0,&$x=0$;\\cr -1,&$x<0$.\\cr}\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ -1, x < 0;\n\ sign (x) = 0, x = 0;\n\ 1, x > 0.\n\ @end example\n\ @end ifinfo\n\ \n\ For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).signum (); else print_usage (); return retval; } DEFUN (sin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sin (@var{x})\n\ Compute the sine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sin (); else print_usage (); return retval; } DEFUN (sinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sinh (@var{x})\n\ Compute the hyperbolic sine of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sinh (); else print_usage (); return retval; } DEFUN (sqrt, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sqrt (@var{x})\n\ Compute the square root of @var{x}. If @var{x} is negative, a complex\n\ result is returned. To compute the matrix square root, see\n\ @ref{Linear Algebra}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sqrt (); else print_usage (); return retval; } DEFUN (tan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tan (@var{z})\n\ Compute tangent of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tan (); else print_usage (); return retval; } DEFUN (tanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tanh (@var{x})\n\ Compute hyperbolic tangent of each element of @var{x}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tanh (); else print_usage (); return retval; } DEFUNX ("toascii", Ftoascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} toascii (@var{s})\n\ Return ASCII representation of @var{s} in a matrix. For example,\n\ \n\ @example\n\ @group\n\ toascii (\"ASCII\")\n\ @result{} [ 65, 83, 67, 73, 73 ]\n\ @end group\n\ \n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoascii (); else print_usage (); return retval; } DEFUNX ("tolower", Ftolower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tolower (@var{s})\n\ Return a copy of the string @var{s}, with each upper-case character\n\ replaced by the corresponding lower-case one; nonalphabetic characters\n\ are left unchanged. For example,\n\ \n\ @example\n\ tolower (\"MiXeD cAsE 123\")\n\ @result{} \"mixed case 123\"\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtolower (); else print_usage (); return retval; } DEFUNX ("toupper", Ftoupper, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} toupper (@var{s})\n\ Return a copy of the string @var{s}, with each lower-case character\n\ replaced by the corresponding upper-case one; nonalphabetic characters\n\ are left unchanged. For example,\n\ \n\ @example\n\ @group\n\ toupper (\"MiXeD cAsE 123\")\n\ @result{} \"MIXED CASE 123\"\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoupper (); else print_usage (); return retval; } DEFALIAS (gammaln, lgamma); DEFALIAS (isfinite, finite); /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */