Mercurial > hg > octave-lyh
view scripts/statistics/distributions/unidrnd.m @ 17173:bb60b1bb47cf
view.m: Fix args undefined error when calling with two arguments
author | Max Brister <max@2bass.com> |
---|---|
date | Sat, 03 Aug 2013 17:23:44 -0600 |
parents | 57569a35765c |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2005-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} unidrnd (@var{n}) ## @deftypefnx {Function File} {} unidrnd (@var{n}, @var{r}) ## @deftypefnx {Function File} {} unidrnd (@var{n}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} unidrnd (@var{n}, [@var{sz}]) ## Return a matrix of random samples from the discrete uniform distribution ## which assumes the integer values 1--@var{n} with equal probability. ## @var{n} may be a scalar or a multi-dimensional array. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the size of ## @var{n}. ## @end deftypefn ## Author: jwe function rnd = unidrnd (n, varargin) if (nargin < 1) print_usage (); endif if (nargin == 1) sz = size (n); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("unidrnd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 2) if (any (cellfun (@(x) (!isscalar (x) || x < 0), varargin))) error ("unidrnd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (!isscalar (n) && !isequal (size (n), sz)) error ("unidrnd: N must be scalar or of size SZ"); endif if (iscomplex (n)) error ("unidrnd: N must not be complex"); endif if (isa (n, "single")) cls = "single"; else cls = "double"; endif if (isscalar (n)) if (n > 0 && n == fix (n)) rnd = ceil (rand (sz, cls) * n); else rnd = NaN (sz, cls); endif else rnd = ceil (rand (sz, cls) .* n); k = ! (n > 0 & n == fix (n)); rnd(k) = NaN; endif endfunction %!assert (size (unidrnd (2)), [1, 1]) %!assert (size (unidrnd (ones (2,1))), [2, 1]) %!assert (size (unidrnd (ones (2,2))), [2, 2]) %!assert (size (unidrnd (10, [4 1])), [4, 1]) %!assert (size (unidrnd (10, 4, 1)), [4, 1]) %% Test class of input preserved %!assert (class (unidrnd (2)), "double") %!assert (class (unidrnd (single (2))), "single") %!assert (class (unidrnd (single ([2 2]))), "single") %% Test input validation %!error unidrnd () %!error unidrnd (10, [1;2;3]) %!error unidrnd (10, 2, ones (2)) %!error unidrnd (10*ones (2), 2, 1) %!error unidrnd (i)