Mercurial > hg > octave-lyh
view libinterp/corefcn/rand.cc @ 17289:bc924baa2c4e
doc: Add new @qcode macro for code samples which are quoted.
Macro handles options ("on") or properties ("position") more elegantly
than @code{"text"}.
* doc/interpreter/macros.texi: Add new @qcode macro.
* doc/interpreter/tips.txi: Add documentation about @qcode macro.
* doc/interpreter/basics.txi, doc/interpreter/container.txi,
doc/interpreter/emacs.txi, doc/interpreter/errors.txi,
doc/interpreter/eval.txi, doc/interpreter/expr.txi,
doc/interpreter/external.txi, doc/interpreter/func.txi,
doc/interpreter/grammar.txi, doc/interpreter/image.txi,
doc/interpreter/install.txi, doc/interpreter/interp.txi,
doc/interpreter/io.txi, doc/interpreter/matrix.txi,
doc/interpreter/numbers.txi, doc/interpreter/oop.txi,
doc/interpreter/package.txi, doc/interpreter/plot.txi,
doc/interpreter/quad.txi, doc/interpreter/sparse.txi,
doc/interpreter/strings.txi, doc/interpreter/system.txi,
doc/interpreter/vectorize.txi, libinterp/corefcn/balance.cc,
libinterp/corefcn/bitfcns.cc, libinterp/corefcn/cellfun.cc,
libinterp/corefcn/conv2.cc, libinterp/corefcn/data.cc,
libinterp/corefcn/debug.cc, libinterp/corefcn/defaults.cc,
libinterp/corefcn/dirfns.cc, libinterp/corefcn/dlmread.cc,
libinterp/corefcn/error.cc, libinterp/corefcn/file-io.cc,
libinterp/corefcn/find.cc, libinterp/corefcn/gammainc.cc,
libinterp/corefcn/graphics.cc, libinterp/corefcn/help.cc,
libinterp/corefcn/hex2num.cc, libinterp/corefcn/input.cc,
libinterp/corefcn/load-path.cc, libinterp/corefcn/load-save.cc,
libinterp/corefcn/ls-oct-ascii.cc, libinterp/corefcn/lu.cc,
libinterp/corefcn/luinc.cc, libinterp/corefcn/matrix_type.cc,
libinterp/corefcn/oct-hist.cc, libinterp/corefcn/pager.cc,
libinterp/corefcn/pr-output.cc, libinterp/corefcn/pt-jit.cc,
libinterp/corefcn/qz.cc, libinterp/corefcn/rand.cc,
libinterp/corefcn/regexp.cc, libinterp/corefcn/schur.cc,
libinterp/corefcn/sighandlers.cc, libinterp/corefcn/sparse.cc,
libinterp/corefcn/spparms.cc, libinterp/corefcn/str2double.cc,
libinterp/corefcn/svd.cc, libinterp/corefcn/symtab.cc,
libinterp/corefcn/syscalls.cc, libinterp/corefcn/toplev.cc,
libinterp/corefcn/tril.cc, libinterp/corefcn/typecast.cc,
libinterp/corefcn/utils.cc, libinterp/corefcn/variables.cc,
libinterp/dldfcn/__init_fltk__.cc, libinterp/dldfcn/chol.cc,
libinterp/dldfcn/colamd.cc, libinterp/dldfcn/fftw.cc, libinterp/dldfcn/qr.cc,
libinterp/dldfcn/symbfact.cc, libinterp/octave-value/ov-base.cc,
libinterp/octave-value/ov-fcn-handle.cc,
libinterp/octave-value/ov-fcn-inline.cc, libinterp/octave-value/ov-java.cc,
libinterp/octave-value/ov-range.cc, libinterp/octave-value/ov-struct.cc,
libinterp/octave-value/ov-usr-fcn.cc, libinterp/parse-tree/oct-parse.in.yy,
libinterp/parse-tree/pt-binop.cc, libinterp/parse-tree/pt-eval.cc,
libinterp/parse-tree/pt-mat.cc, scripts/@ftp/ftp.m,
scripts/deprecated/java_convert_matrix.m, scripts/deprecated/java_debug.m,
scripts/deprecated/java_unsigned_conversion.m, scripts/deprecated/shell_cmd.m,
scripts/general/dblquad.m, scripts/general/display.m,
scripts/general/genvarname.m, scripts/general/idivide.m,
scripts/general/interp1.m, scripts/general/interp2.m,
scripts/general/interp3.m, scripts/general/interpn.m, scripts/general/isa.m,
scripts/general/profexplore.m, scripts/general/profile.m,
scripts/general/quadgk.m, scripts/general/randi.m, scripts/general/structfun.m,
scripts/general/subsindex.m, scripts/general/triplequad.m,
scripts/geometry/griddata.m, scripts/geometry/griddata3.m,
scripts/geometry/griddatan.m, scripts/geometry/voronoi.m, scripts/help/help.m,
scripts/help/lookfor.m, scripts/image/cmpermute.m, scripts/image/colormap.m,
scripts/image/image.m, scripts/image/imagesc.m, scripts/image/imfinfo.m,
scripts/image/imformats.m, scripts/image/imread.m, scripts/image/imshow.m,
scripts/image/imwrite.m, scripts/image/ind2gray.m, scripts/image/lines.m,
scripts/image/rgb2ind.m, scripts/image/spinmap.m, scripts/io/dlmwrite.m,
scripts/io/strread.m, scripts/io/textread.m, scripts/io/textscan.m,
scripts/java/javaclasspath.m, scripts/java/usejava.m,
scripts/miscellaneous/bzip2.m, scripts/miscellaneous/computer.m,
scripts/miscellaneous/copyfile.m, scripts/miscellaneous/debug.m,
scripts/miscellaneous/dos.m, scripts/miscellaneous/edit.m,
scripts/miscellaneous/gzip.m, scripts/miscellaneous/license.m,
scripts/miscellaneous/mkoctfile.m, scripts/miscellaneous/movefile.m,
scripts/miscellaneous/parseparams.m, scripts/miscellaneous/unix.m,
scripts/optimization/fminbnd.m, scripts/optimization/fminsearch.m,
scripts/optimization/fminunc.m, scripts/optimization/fsolve.m,
scripts/optimization/fzero.m, scripts/optimization/glpk.m,
scripts/optimization/lsqnonneg.m, scripts/optimization/optimset.m,
scripts/optimization/pqpnonneg.m, scripts/pkg/pkg.m, scripts/plot/allchild.m,
scripts/plot/ancestor.m, scripts/plot/area.m, scripts/plot/axis.m,
scripts/plot/bar.m, scripts/plot/barh.m, scripts/plot/box.m,
scripts/plot/caxis.m, scripts/plot/cla.m, scripts/plot/clabel.m,
scripts/plot/clf.m, scripts/plot/close.m, scripts/plot/colorbar.m,
scripts/plot/daspect.m, scripts/plot/ezmesh.m, scripts/plot/ezmeshc.m,
scripts/plot/ezsurf.m, scripts/plot/ezsurfc.m, scripts/plot/findall.m,
scripts/plot/findobj.m, scripts/plot/gcbo.m, scripts/plot/gcf.m,
scripts/plot/gco.m, scripts/plot/grid.m, scripts/plot/guihandles.m,
scripts/plot/hdl2struct.m, scripts/plot/hidden.m, scripts/plot/hold.m,
scripts/plot/isonormals.m, scripts/plot/isosurface.m, scripts/plot/legend.m,
scripts/plot/mesh.m, scripts/plot/meshc.m, scripts/plot/meshz.m,
scripts/plot/newplot.m, scripts/plot/orient.m, scripts/plot/pareto.m,
scripts/plot/patch.m, scripts/plot/pbaspect.m, scripts/plot/pcolor.m,
scripts/plot/plot.m, scripts/plot/print.m,
scripts/plot/private/__add_default_menu__.m, scripts/plot/quiver.m,
scripts/plot/quiver3.m, scripts/plot/refreshdata.m, scripts/plot/saveas.m,
scripts/plot/scatter.m, scripts/plot/scatter3.m, scripts/plot/shading.m,
scripts/plot/shrinkfaces.m, scripts/plot/slice.m, scripts/plot/stem.m,
scripts/plot/stem3.m, scripts/plot/struct2hdl.m, scripts/plot/subplot.m,
scripts/plot/surf.m, scripts/plot/surfc.m, scripts/plot/surfl.m,
scripts/plot/tetramesh.m, scripts/plot/uigetfile.m, scripts/plot/uimenu.m,
scripts/plot/uiputfile.m, scripts/plot/waterfall.m, scripts/plot/whitebg.m,
scripts/plot/xlim.m, scripts/plot/ylim.m, scripts/plot/zlim.m,
scripts/polynomial/conv.m, scripts/polynomial/polyout.m,
scripts/polynomial/splinefit.m, scripts/set/ismember.m, scripts/set/powerset.m,
scripts/set/setdiff.m, scripts/set/union.m, scripts/set/unique.m,
scripts/signal/detrend.m, scripts/signal/filter2.m, scripts/signal/freqz.m,
scripts/signal/periodogram.m, scripts/signal/spectral_adf.m,
scripts/signal/spectral_xdf.m, scripts/sparse/eigs.m, scripts/sparse/svds.m,
scripts/specfun/legendre.m, scripts/special-matrix/gallery.m,
scripts/statistics/base/mean.m, scripts/statistics/base/moment.m,
scripts/statistics/tests/cor_test.m,
scripts/statistics/tests/kolmogorov_smirnov_test.m,
scripts/statistics/tests/kolmogorov_smirnov_test_2.m,
scripts/statistics/tests/kruskal_wallis_test.m,
scripts/statistics/tests/prop_test_2.m, scripts/statistics/tests/sign_test.m,
scripts/statistics/tests/t_test.m, scripts/statistics/tests/t_test_2.m,
scripts/statistics/tests/t_test_regression.m,
scripts/statistics/tests/u_test.m, scripts/statistics/tests/var_test.m,
scripts/statistics/tests/welch_test.m,
scripts/statistics/tests/wilcoxon_test.m, scripts/statistics/tests/z_test.m,
scripts/statistics/tests/z_test_2.m, scripts/strings/base2dec.m,
scripts/strings/index.m, scripts/strings/isstrprop.m,
scripts/strings/mat2str.m, scripts/strings/regexptranslate.m,
scripts/strings/rindex.m, scripts/strings/str2num.m, scripts/strings/strcat.m,
scripts/strings/strjust.m, scripts/strings/strmatch.m,
scripts/strings/validatestring.m, scripts/testfun/demo.m,
scripts/testfun/example.m, scripts/testfun/test.m, scripts/time/addtodate.m,
scripts/time/asctime.m, scripts/time/datestr.m, scripts/time/datetick.m,
scripts/time/weekday.m, scripts/ui/errordlg.m, scripts/ui/helpdlg.m,
scripts/ui/inputdlg.m, scripts/ui/listdlg.m, scripts/ui/msgbox.m,
scripts/ui/questdlg.m, scripts/ui/warndlg.m: Use new @qcode macro.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 19 Aug 2013 20:46:38 -0700 |
parents | 213ee68b59da |
children | b81b9d079515 |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <ctime> #if defined (HAVE_UNORDERED_MAP) #include <unordered_map> #elif defined (HAVE_TR1_UNORDERED_MAP) #include <tr1/unordered_map> #endif #include <string> #include "f77-fcn.h" #include "lo-mappers.h" #include "oct-rand.h" #include "quit.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "unwind-prot.h" #include "utils.h" #include "ov-re-mat.h" /* %!shared __random_statistical_tests__ %! # Flag whether the statistical tests should be run in "make check" or not %! __random_statistical_tests__ = 0; */ static octave_value do_rand (const octave_value_list& args, int nargin, const char *fcn, const std::string& distribution, bool additional_arg = false) { octave_value retval; NDArray a; int idx = 0; dim_vector dims; bool is_single = false; unwind_protect frame; // Restore current distribution on any exit. frame.add_fcn (octave_rand::distribution, octave_rand::distribution ()); octave_rand::distribution (distribution); if (nargin > 0 && args(nargin-1).is_string ()) { std::string s_arg = args(nargin-1).string_value (); if (s_arg == "single") { is_single = true; nargin--; } else if (s_arg == "double") nargin--; } if (additional_arg) { if (nargin == 0) { error ("%s: expecting at least one argument", fcn); goto done; } else if (args(0).is_string ()) additional_arg = false; else { a = args(0).array_value (); if (error_state) { error ("%s: expecting scalar or matrix arguments", fcn); goto done; } idx++; nargin--; } } switch (nargin) { case 0: { if (additional_arg) dims = a.dims (); else { dims.resize (2); dims(0) = 1; dims(1) = 1; } goto gen_matrix; } break; case 1: { octave_value tmp = args(idx); if (tmp.is_string ()) { std::string s_arg = tmp.string_value (); if (s_arg == "dist") { retval = octave_rand::distribution (); } else if (s_arg == "seed") { retval = octave_rand::seed (); } else if (s_arg == "state" || s_arg == "twister") { retval = octave_rand::state (fcn); } else if (s_arg == "uniform") { octave_rand::uniform_distribution (); } else if (s_arg == "normal") { octave_rand::normal_distribution (); } else if (s_arg == "exponential") { octave_rand::exponential_distribution (); } else if (s_arg == "poisson") { octave_rand::poisson_distribution (); } else if (s_arg == "gamma") { octave_rand::gamma_distribution (); } else error ("%s: unrecognized string argument", fcn); } else if (tmp.is_scalar_type ()) { double dval = tmp.double_value (); if (xisnan (dval)) { error ("%s: NaN is invalid matrix dimension", fcn); } else { dims.resize (2); dims(0) = NINTbig (tmp.double_value ()); dims(1) = NINTbig (tmp.double_value ()); if (! error_state) goto gen_matrix; } } else if (tmp.is_range ()) { Range r = tmp.range_value (); if (r.all_elements_are_ints ()) { octave_idx_type n = r.nelem (); dims.resize (n); octave_idx_type base = NINTbig (r.base ()); octave_idx_type incr = NINTbig (r.inc ()); for (octave_idx_type i = 0; i < n; i++) { //Negative dimensions are treated as zero for Matlab //compatibility dims(i) = base >= 0 ? base : 0; base += incr; } goto gen_matrix; } else error ("%s: all elements of range must be integers", fcn); } else if (tmp.is_matrix_type ()) { Array<int> iv = tmp.int_vector_value (true); if (! error_state) { octave_idx_type len = iv.length (); dims.resize (len); for (octave_idx_type i = 0; i < len; i++) { //Negative dimensions are treated as zero for Matlab //compatibility octave_idx_type elt = iv(i); dims(i) = elt >=0 ? elt : 0; } goto gen_matrix; } else error ("%s: expecting integer vector", fcn); } else { gripe_wrong_type_arg ("rand", tmp); return retval; } } break; default: { octave_value tmp = args(idx); if (nargin == 2 && tmp.is_string ()) { std::string ts = tmp.string_value (); if (ts == "seed") { if (args(idx+1).is_real_scalar ()) { double d = args(idx+1).double_value (); if (! error_state) octave_rand::seed (d); } else if (args(idx+1).is_string () && args(idx+1).string_value () == "reset") octave_rand::reset (); else error ("%s: seed must be a real scalar", fcn); } else if (ts == "state" || ts == "twister") { if (args(idx+1).is_string () && args(idx+1).string_value () == "reset") octave_rand::reset (fcn); else { ColumnVector s = ColumnVector (args(idx+1).vector_value(false, true)); if (! error_state) octave_rand::state (s, fcn); } } else error ("%s: unrecognized string argument", fcn); } else { dims.resize (nargin); for (int i = 0; i < nargin; i++) { octave_idx_type elt = args(idx+i).int_value (); if (error_state) { error ("%s: expecting integer arguments", fcn); goto done; } //Negative is zero for Matlab compatibility dims(i) = elt >= 0 ? elt : 0; } goto gen_matrix; } } break; } done: return retval; gen_matrix: dims.chop_trailing_singletons (); if (is_single) { if (additional_arg) { if (a.length () == 1) return octave_rand::float_nd_array (dims, a(0)); else { if (a.dims () != dims) { error ("%s: mismatch in argument size", fcn); return retval; } octave_idx_type len = a.length (); FloatNDArray m (dims); float *v = m.fortran_vec (); for (octave_idx_type i = 0; i < len; i++) v[i] = octave_rand::float_scalar (a(i)); return m; } } else return octave_rand::float_nd_array (dims); } else { if (additional_arg) { if (a.length () == 1) return octave_rand::nd_array (dims, a(0)); else { if (a.dims () != dims) { error ("%s: mismatch in argument size", fcn); return retval; } octave_idx_type len = a.length (); NDArray m (dims); double *v = m.fortran_vec (); for (octave_idx_type i = 0; i < len; i++) v[i] = octave_rand::scalar (a(i)); return m; } } else return octave_rand::nd_array (dims); } } DEFUN (rand, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} rand (@var{n})\n\ @deftypefnx {Built-in Function} {} rand (@var{n}, @var{m}, @dots{})\n\ @deftypefnx {Built-in Function} {} rand ([@var{n} @var{m} @dots{}])\n\ @deftypefnx {Built-in Function} {@var{v} =} rand (\"state\")\n\ @deftypefnx {Built-in Function} {} rand (\"state\", @var{v})\n\ @deftypefnx {Built-in Function} {} rand (\"state\", \"reset\")\n\ @deftypefnx {Built-in Function} {@var{v} =} rand (\"seed\")\n\ @deftypefnx {Built-in Function} {} rand (\"seed\", @var{v})\n\ @deftypefnx {Built-in Function} {} rand (\"seed\", \"reset\")\n\ @deftypefnx {Built-in Function} {} rand (@dots{}, \"single\")\n\ @deftypefnx {Built-in Function} {} rand (@dots{}, \"double\")\n\ Return a matrix with random elements uniformly distributed on the\n\ interval (0, 1). The arguments are handled the same as the arguments\n\ for @code{eye}.\n\ \n\ You can query the state of the random number generator using the\n\ form\n\ \n\ @example\n\ v = rand (\"state\")\n\ @end example\n\ \n\ This returns a column vector @var{v} of length 625. Later, you can\n\ restore the random number generator to the state @var{v}\n\ using the form\n\ \n\ @example\n\ rand (\"state\", v)\n\ @end example\n\ \n\ @noindent\n\ You may also initialize the state vector from an arbitrary vector of\n\ length @leq{} 625 for @var{v}. This new state will be a hash based on the\n\ value of @var{v}, not @var{v} itself.\n\ \n\ By default, the generator is initialized from @code{/dev/urandom} if it is\n\ available, otherwise from CPU time, wall clock time, and the current\n\ fraction of a second. Note that this differs from @sc{matlab}, which\n\ always initializes the state to the same state at startup. To obtain\n\ behavior comparable to @sc{matlab}, initialize with a deterministic state\n\ vector in Octave's startup files (@pxref{Startup Files}).\n\ \n\ To compute the pseudo-random sequence, @code{rand} uses the Mersenne\n\ Twister with a period of @math{2^{19937}-1} (See M. Matsumoto and\n\ T. Nishimura,\n\ @cite{Mersenne Twister: A 623-dimensionally equidistributed uniform\n\ pseudorandom number generator}, ACM Trans. on\n\ Modeling and Computer Simulation Vol. 8, No. 1, pp. 3-30, January 1998,\n\ @url{http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html}).\n\ Do @strong{not} use for cryptography without securely hashing\n\ several returned values together, otherwise the generator state\n\ can be learned after reading 624 consecutive values.\n\ \n\ Older versions of Octave used a different random number generator.\n\ The new generator is used by default\n\ as it is significantly faster than the old generator, and produces\n\ random numbers with a significantly longer cycle time. However, in\n\ some circumstances it might be desirable to obtain the same random\n\ sequences as used by the old generators. To do this the keyword\n\ @qcode{\"seed\"} is used to specify that the old generators should be use,\n\ as in\n\ \n\ @example\n\ rand (\"seed\", val)\n\ @end example\n\ \n\ @noindent\n\ which sets the seed of the generator to @var{val}. The seed of the\n\ generator can be queried with\n\ \n\ @example\n\ s = rand (\"seed\")\n\ @end example\n\ \n\ However, it should be noted that querying the seed will not cause\n\ @code{rand} to use the old generators, only setting the seed will.\n\ To cause @code{rand} to once again use the new generators, the\n\ keyword @qcode{\"state\"} should be used to reset the state of the\n\ @code{rand}.\n\ \n\ The state or seed of the generator can be reset to a new random value\n\ using the @qcode{\"reset\"} keyword.\n\ \n\ The class of the value returned can be controlled by a trailing\n\ @qcode{\"double\"} or @qcode{\"single\"} argument. These are the only valid\n\ classes.\n\ @seealso{randn, rande, randg, randp}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); retval = do_rand (args, nargin, "rand", "uniform"); return retval; } // FIXME -- The old generator (selected when "seed" is set) will not // work properly if compiled to use 64-bit integers. /* %!test # "state" can be a scalar %! rand ("state", 12); x = rand (1,4); %! rand ("state", 12); y = rand (1,4); %! assert (x, y); %!test # "state" can be a vector %! rand ("state", [12,13]); x = rand (1,4); %! rand ("state", [12;13]); y = rand (1,4); %! assert (x, y); %!test # querying "state" doesn't disturb sequence %! rand ("state", 12); rand (1,2); x = rand (1,2); %! rand ("state", 12); rand (1,2); %! s = rand ("state"); y = rand (1,2); %! assert (x, y); %! rand ("state", s); z = rand (1,2); %! assert (x, z); %!test # "seed" must be a scalar %! rand ("seed", 12); x = rand (1,4); %! rand ("seed", 12); y = rand (1,4); %! assert (x, y); %!error <seed must be a real scalar> rand ("seed", [12,13]) %!test # querying "seed" returns a value which can be used later %! s = rand ("seed"); x = rand (1,2); %! rand ("seed", s); y = rand (1,2); %! assert (x, y); %!test # querying "seed" doesn't disturb sequence %! rand ("seed", 12); rand (1,2); x = rand (1,2); %! rand ("seed", 12); rand (1,2); %! s = rand ("seed"); y = rand (1,2); %! assert (x, y); %! rand ("seed", s); z = rand (1,2); %! assert (x, z); */ /* %!test %! # Test fixed state %! rand ("state", 1); %! assert (rand (1,6), [0.1343642441124013 0.8474337369372327 0.763774618976614 0.2550690257394218 0.495435087091941 0.4494910647887382], 1e-6); %!test %! # Test fixed seed %! rand ("seed", 1); %! assert (rand (1,6), [0.8668024251237512 0.9126510815694928 0.09366085007786751 0.1664607301354408 0.7408077004365623 0.7615650338120759], 1e-6); %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! rand ("state", 12); %! x = rand (100000, 1); %! assert (max (x) < 1); #*** Please report this!!! *** %! assert (min (x) > 0); #*** Please report this!!! *** %! assert (mean (x), 0.5, 0.0024); %! assert (var (x), 1/48, 0.0632); %! assert (skewness (x), 0, 0.012); %! assert (kurtosis (x), -6/5, 0.0094); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! rand ("seed", 12); %! x = rand (100000, 1); %! assert (max (x) < 1); #*** Please report this!!! *** %! assert (min (x) > 0); #*** Please report this!!! *** %! assert (mean (x), 0.5, 0.0024); %! assert (var (x), 1/48, 0.0632); %! assert (skewness (x), 0, 0.012); %! assert (kurtosis (x), -6/5, 0.0094); %! endif */ /* %!# Test out-of-range values as rand() seeds. See oct-rand.cc: double2uint32(). %!function v = __rand_sample__ (initval) %! rand ("state", initval); %! v = rand (1, 6); %!endfunction %! %!assert (__rand_sample__ (0), __rand_sample__ (2^32)) %!assert (__rand_sample__ (-2), __rand_sample__ (2^32-2)) %!assert (__rand_sample__ (Inf), __rand_sample__ (NaN)) %!assert (! isequal (__rand_sample__ (-1), __rand_sample__ (-2))) */ static std::string current_distribution = octave_rand::distribution (); DEFUN (randn, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} randn (@var{n})\n\ @deftypefnx {Built-in Function} {} randn (@var{n}, @var{m}, @dots{})\n\ @deftypefnx {Built-in Function} {} randn ([@var{n} @var{m} @dots{}])\n\ @deftypefnx {Built-in Function} {@var{v} =} randn (\"state\")\n\ @deftypefnx {Built-in Function} {} randn (\"state\", @var{v})\n\ @deftypefnx {Built-in Function} {} randn (\"state\", \"reset\")\n\ @deftypefnx {Built-in Function} {@var{v} =} randn (\"seed\")\n\ @deftypefnx {Built-in Function} {} randn (\"seed\", @var{v})\n\ @deftypefnx {Built-in Function} {} randn (\"seed\", \"reset\")\n\ @deftypefnx {Built-in Function} {} randn (@dots{}, \"single\")\n\ @deftypefnx {Built-in Function} {} randn (@dots{}, \"double\")\n\ Return a matrix with normally distributed random\n\ elements having zero mean and variance one. The arguments are\n\ handled the same as the arguments for @code{rand}.\n\ \n\ By default, @code{randn} uses the Marsaglia and Tsang ``Ziggurat technique''\n\ to transform from a uniform to a normal distribution.\n\ \n\ The class of the value returned can be controlled by a trailing\n\ @qcode{\"double\"} or @qcode{\"single\"} argument. These are the only valid\n\ classes.\n\ \n\ Reference: G. Marsaglia and W.W. Tsang,\n\ @cite{Ziggurat Method for Generating Random Variables},\n\ J. Statistical Software, vol 5, 2000,\n\ @url{http://www.jstatsoft.org/v05/i08/})\n\ \n\ @seealso{rand, rande, randg, randp}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); retval = do_rand (args, nargin, "randn", "normal"); return retval; } /* %!test %! # Test fixed state %! randn ("state", 1); %! assert (randn (1, 6), [-2.666521678978671 -0.7381719971724564 1.507903992673601 0.6019427189162239 -0.450661261143348 -0.7054431351574116], 1e-6); %!test %! # Test fixed seed %! randn ("seed", 1); %! assert (randn (1, 6), [-1.039402365684509 -1.25938892364502 0.1968704611063004 0.3874166905879974 -0.5976632833480835 -0.6615074276924133], 1e-6); %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randn ("state", 12); %! x = randn (100000, 1); %! assert (mean (x), 0, 0.01); %! assert (var (x), 1, 0.02); %! assert (skewness (x), 0, 0.02); %! assert (kurtosis (x), 0, 0.04); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randn ("seed", 12); %! x = randn (100000, 1); %! assert (mean (x), 0, 0.01); %! assert (var (x), 1, 0.02); %! assert (skewness (x), 0, 0.02); %! assert (kurtosis (x), 0, 0.04); %! endif */ DEFUN (rande, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} rande (@var{n})\n\ @deftypefnx {Built-in Function} {} rande (@var{n}, @var{m}, @dots{})\n\ @deftypefnx {Built-in Function} {} rande ([@var{n} @var{m} @dots{}])\n\ @deftypefnx {Built-in Function} {@var{v} =} rande (\"state\")\n\ @deftypefnx {Built-in Function} {} rande (\"state\", @var{v})\n\ @deftypefnx {Built-in Function} {} rande (\"state\", \"reset\")\n\ @deftypefnx {Built-in Function} {@var{v} =} rande (\"seed\")\n\ @deftypefnx {Built-in Function} {} rande (\"seed\", @var{v})\n\ @deftypefnx {Built-in Function} {} rande (\"seed\", \"reset\")\n\ @deftypefnx {Built-in Function} {} rande (@dots{}, \"single\")\n\ @deftypefnx {Built-in Function} {} rande (@dots{}, \"double\")\n\ Return a matrix with exponentially distributed random elements. The\n\ arguments are handled the same as the arguments for @code{rand}.\n\ \n\ By default, @code{randn} uses the Marsaglia and Tsang ``Ziggurat technique''\n\ to transform from a uniform to an exponential distribution.\n\ \n\ The class of the value returned can be controlled by a trailing\n\ @qcode{\"double\"} or @qcode{\"single\"} argument. These are the only valid\n\ classes.\n\ \n\ Reference: G. Marsaglia and W.W. Tsang,\n\ @cite{Ziggurat Method for Generating Random Variables},\n\ J. Statistical Software, vol 5, 2000,\n\ @url{http://www.jstatsoft.org/v05/i08/})\n\ \n\ @seealso{rand, randn, randg, randp}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); retval = do_rand (args, nargin, "rande", "exponential"); return retval; } /* %!test %! # Test fixed state %! rande ("state", 1); %! assert (rande (1, 6), [3.602973885835625 0.1386190677555021 0.6743112889616958 0.4512830847258422 0.7255744741233175 0.3415969205292291], 1e-6); %!test %! # Test fixed seed %! rande ("seed", 1); %! assert (rande (1, 6), [0.06492075175653866 1.717980206012726 0.4816154008731246 0.5231300676241517 0.103910739364359 1.668931916356087], 1e-6); %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally %! rande ("state", 1); %! x = rande (100000, 1); %! assert (min (x) > 0); # *** Please report this!!! *** %! assert (mean (x), 1, 0.01); %! assert (var (x), 1, 0.03); %! assert (skewness (x), 2, 0.06); %! assert (kurtosis (x), 6, 0.7); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally %! rande ("seed", 1); %! x = rande (100000, 1); %! assert (min (x)>0); # *** Please report this!!! *** %! assert (mean (x), 1, 0.01); %! assert (var (x), 1, 0.03); %! assert (skewness (x), 2, 0.06); %! assert (kurtosis (x), 6, 0.7); %! endif */ DEFUN (randg, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} randg (@var{n})\n\ @deftypefnx {Built-in Function} {} randg (@var{n}, @var{m}, @dots{})\n\ @deftypefnx {Built-in Function} {} randg ([@var{n} @var{m} @dots{}])\n\ @deftypefnx {Built-in Function} {@var{v} =} randg (\"state\")\n\ @deftypefnx {Built-in Function} {} randg (\"state\", @var{v})\n\ @deftypefnx {Built-in Function} {} randg (\"state\", \"reset\")\n\ @deftypefnx {Built-in Function} {@var{v} =} randg (\"seed\")\n\ @deftypefnx {Built-in Function} {} randg (\"seed\", @var{v})\n\ @deftypefnx {Built-in Function} {} randg (\"seed\", \"reset\")\n\ @deftypefnx {Built-in Function} {} randg (@dots{}, \"single\")\n\ @deftypefnx {Built-in Function} {} randg (@dots{}, \"double\")\n\ Return a matrix with @code{gamma (@var{a},1)} distributed random elements.\n\ The arguments are handled the same as the arguments for @code{rand},\n\ except for the argument @var{a}.\n\ \n\ This can be used to generate many distributions:\n\ \n\ @table @asis\n\ @item @code{gamma (a, b)} for @code{a > -1}, @code{b > 0}\n\ \n\ @example\n\ r = b * randg (a)\n\ @end example\n\ \n\ @item @code{beta (a, b)} for @code{a > -1}, @code{b > -1}\n\ \n\ @example\n\ @group\n\ r1 = randg (a, 1)\n\ r = r1 / (r1 + randg (b, 1))\n\ @end group\n\ @end example\n\ \n\ @item @code{Erlang (a, n)}\n\ \n\ @example\n\ r = a * randg (n)\n\ @end example\n\ \n\ @item @code{chisq (df)} for @code{df > 0}\n\ \n\ @example\n\ r = 2 * randg (df / 2)\n\ @end example\n\ \n\ @item @code{t (df)} for @code{0 < df < inf} (use randn if df is infinite)\n\ \n\ @example\n\ r = randn () / sqrt (2 * randg (df / 2) / df)\n\ @end example\n\ \n\ @item @code{F (n1, n2)} for @code{0 < n1}, @code{0 < n2}\n\ \n\ @example\n\ @group\n\ ## r1 equals 1 if n1 is infinite\n\ r1 = 2 * randg (n1 / 2) / n1\n\ ## r2 equals 1 if n2 is infinite\n\ r2 = 2 * randg (n2 / 2) / n2\n\ r = r1 / r2\n\n\ @end group\n\ @end example\n\ \n\ @item negative @code{binomial (n, p)} for @code{n > 0}, @code{0 < p <= 1}\n\ \n\ @example\n\ r = randp ((1 - p) / p * randg (n))\n\ @end example\n\ \n\ @item non-central @code{chisq (df, L)}, for @code{df >= 0} and @code{L > 0}\n\ (use chisq if @code{L = 0})\n\ \n\ @example\n\ @group\n\ r = randp (L / 2)\n\ r(r > 0) = 2 * randg (r(r > 0))\n\ r(df > 0) += 2 * randg (df(df > 0)/2)\n\ @end group\n\ @end example\n\ \n\ @item @code{Dirichlet (a1, @dots{} ak)}\n\ \n\ @example\n\ @group\n\ r = (randg (a1), @dots{}, randg (ak))\n\ r = r / sum (r)\n\ @end group\n\ @end example\n\ \n\ @end table\n\ \n\ The class of the value returned can be controlled by a trailing\n\ @qcode{\"double\"} or @qcode{\"single\"} argument. These are the only valid\n\ classes.\n\ @seealso{rand, randn, rande, randp}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin < 1) error ("randg: insufficient arguments"); else retval = do_rand (args, nargin, "randg", "gamma", true); return retval; } /* %!test %! randg ("state", 12) %! assert (randg ([-inf, -1, 0, inf, nan]), [nan, nan, nan, nan, nan]); # *** Please report %!test %! # Test fixed state %! randg ("state", 1); %! assert (randg (0.1, 1, 6), [0.0103951513331241 8.335671459898252e-05 0.00138691397249762 0.000587308416993855 0.495590518784736 2.3921917414795e-12], 1e-6); %!test %! # Test fixed state %! randg ("state", 1); %! assert (randg (0.95, 1, 6), [3.099382433255327 0.3974529788871218 0.644367450750855 1.143261091802246 1.964111762696822 0.04011915547957939], 1e-6); %!test %! # Test fixed state %! randg ("state", 1); %! assert (randg (1, 1, 6), [0.2273389379645993 1.288822625058359 0.2406335209340746 1.218869553370733 1.024649860162554 0.09631230343599533], 1e-6); %!test %! # Test fixed state %! randg ("state", 1); %! assert (randg (10, 1, 6), [3.520369644331133 15.15369864472106 8.332112081991205 8.406211067432674 11.81193475187611 10.88792728177059], 1e-5); %!test %! # Test fixed state %! randg ("state", 1); %! assert (randg (100, 1, 6), [75.34570255262264 115.4911985594699 95.23493031356388 95.48926019250911 106.2397448229803 103.4813150404118], 1e-4); %!test %! # Test fixed seed %! randg ("seed", 1); %! assert (randg (0.1, 1, 6), [0.07144210487604141 0.460641473531723 0.4749028384685516 0.06823389977216721 0.000293838675133884 1.802567535340305e-12], 1e-6); %!test %! # Test fixed seed %! randg ("seed", 1); %! assert (randg (0.95, 1, 6), [1.664905071258545 1.879976987838745 1.905677795410156 0.9948706030845642 0.5606933236122131 0.0766092911362648], 1e-6); %!test %! # Test fixed seed %! randg ("seed", 1); %! assert (randg (1, 1, 6), [0.03512085229158401 0.6488978862762451 0.8114678859710693 0.1666885763406754 1.60791552066803 1.90356981754303], 1e-6); %!test %! # Test fixed seed %! randg ("seed", 1); %! assert (randg (10, 1, 6), [6.566435813903809 10.11648464202881 10.73162078857422 7.747178077697754 6.278522491455078 6.240195751190186], 1e-5); %!test %! # Test fixed seed %! randg ("seed", 1); %! assert (randg (100, 1, 6), [89.40208435058594 101.4734725952148 103.4020004272461 93.62763214111328 88.33104705810547 88.1871337890625], 1e-4); %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("state", 12); %! a = 0.1; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.01); %! assert (skewness (x), 2/sqrt (a), 1); %! assert (kurtosis (x), 6/a, 50); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("state", 12); %! a = 0.95; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.04); %! assert (skewness (x), 2/sqrt (a), 0.2); %! assert (kurtosis (x), 6/a, 2); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("state", 12); %! a = 1; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.04); %! assert (skewness (x), 2/sqrt (a), 0.2); %! assert (kurtosis (x), 6/a, 2); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("state", 12); %! a = 10; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.1); %! assert (var (x), a, 0.5); %! assert (skewness (x), 2/sqrt (a), 0.1); %! assert (kurtosis (x), 6/a, 0.5); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("state", 12); %! a = 100; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.2); %! assert (var (x), a, 2); %! assert (skewness (x), 2/sqrt (a), 0.05); %! assert (kurtosis (x), 6/a, 0.2); %! endif %!test %! randg ("seed", 12); %!assert (randg ([-inf, -1, 0, inf, nan]), [nan, nan, nan, nan, nan]) # *** Please report %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("seed", 12); %! a = 0.1; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.01); %! assert (skewness (x), 2/sqrt (a), 1); %! assert (kurtosis (x), 6/a, 50); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("seed", 12); %! a = 0.95; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.04); %! assert (skewness (x), 2/sqrt (a), 0.2); %! assert (kurtosis (x), 6/a, 2); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("seed", 12); %! a = 1; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.01); %! assert (var (x), a, 0.04); %! assert (skewness (x), 2/sqrt (a), 0.2); %! assert (kurtosis (x), 6/a, 2); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("seed", 12); %! a = 10; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.1); %! assert (var (x), a, 0.5); %! assert (skewness (x), 2/sqrt (a), 0.1); %! assert (kurtosis (x), 6/a, 0.5); %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randg ("seed", 12); %! a = 100; %! x = randg (a, 100000, 1); %! assert (mean (x), a, 0.2); %! assert (var (x), a, 2); %! assert (skewness (x), 2/sqrt (a), 0.05); %! assert (kurtosis (x), 6/a, 0.2); %! endif */ DEFUN (randp, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} randp (@var{l}, @var{n})\n\ @deftypefnx {Built-in Function} {} randp (@var{l}, @var{n}, @var{m}, @dots{})\n\ @deftypefnx {Built-in Function} {} randp (@var{l}, [@var{n} @var{m} @dots{}])\n\ @deftypefnx {Built-in Function} {@var{v} =} randp (\"state\")\n\ @deftypefnx {Built-in Function} {} randp (\"state\", @var{v})\n\ @deftypefnx {Built-in Function} {} randp (\"state\", \"reset\")\n\ @deftypefnx {Built-in Function} {@var{v} =} randp (\"seed\")\n\ @deftypefnx {Built-in Function} {} randp (\"seed\", @var{v})\n\ @deftypefnx {Built-in Function} {} randp (\"seed\", \"reset\")\n\ @deftypefnx {Built-in Function} {} randp (@dots{}, \"single\")\n\ @deftypefnx {Built-in Function} {} randp (@dots{}, \"double\")\n\ Return a matrix with Poisson distributed random elements with mean value\n\ parameter given by the first argument, @var{l}. The arguments\n\ are handled the same as the arguments for @code{rand}, except for the\n\ argument @var{l}.\n\ \n\ Five different algorithms are used depending on the range of @var{l}\n\ and whether or not @var{l} is a scalar or a matrix.\n\ \n\ @table @asis\n\ @item For scalar @var{l} @leq{} 12, use direct method.\n\ W.H. Press, et al., @cite{Numerical Recipes in C},\n\ Cambridge University Press, 1992.\n\ \n\ @item For scalar @var{l} > 12, use rejection method.[1]\n\ W.H. Press, et al., @cite{Numerical Recipes in C},\n\ Cambridge University Press, 1992.\n\ \n\ @item For matrix @var{l} @leq{} 10, use inversion method.[2]\n\ E. Stadlober, et al., WinRand source code, available via FTP.\n\ \n\ @item For matrix @var{l} > 10, use patchwork rejection method.\n\ E. Stadlober, et al., WinRand source code, available via FTP, or\n\ H. Zechner, @cite{Efficient sampling from continuous and discrete\n\ unimodal distributions}, Doctoral Dissertation, 156pp., Technical\n\ University Graz, Austria, 1994.\n\ \n\ @item For @var{l} > 1e8, use normal approximation.\n\ L. Montanet, et al., @cite{Review of Particle Properties}, Physical Review\n\ D 50 p1284, 1994.\n\ @end table\n\ \n\ The class of the value returned can be controlled by a trailing\n\ @qcode{\"double\"} or @qcode{\"single\"} argument. These are the only valid\n\ classes.\n\ @seealso{rand, randn, rande, randg}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin < 1) error ("randp: insufficient arguments"); else retval = do_rand (args, nargin, "randp", "poisson", true); return retval; } /* %!test %! randp ("state", 12); %! assert (randp ([-inf, -1, 0, inf, nan]), [nan, nan, 0, nan, nan]); # *** Please report %!test %! # Test fixed state %! randp ("state", 1); %! assert (randp (5, 1, 6), [5 5 3 7 7 3]) %!test %! # Test fixed state %! randp ("state", 1); %! assert (randp (15, 1, 6), [13 15 8 18 18 15]) %!test %! # Test fixed state %! randp ("state", 1); %! assert (randp (1e9, 1, 6), [999915677 999976657 1000047684 1000019035 999985749 999977692], -1e-6) %!test %! # Test fixed state %! randp ("seed", 1); %! %%assert (randp (5, 1, 6), [8 2 3 6 6 8]) %! assert (randp (5, 1, 5), [8 2 3 6 6]) %!test %! # Test fixed state %! randp ("seed", 1); %! assert (randp (15, 1, 6), [15 16 12 10 10 12]) %!test %! # Test fixed state %! randp ("seed", 1); %! assert (randp (1e9, 1, 6), [1000006208 1000012224 999981120 999963520 999963072 999981440], -1e-6) %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randp ("state", 12); %! for a = [5, 15, 1e9; 0.03, 0.03, -5e-3; 0.03, 0.03, 0.03] %! x = randp (a (1), 100000, 1); %! assert (min (x) >= 0); # *** Please report this!!! *** %! assert (mean (x), a(1), a(2)); %! assert (var (x), a(1), 0.02*a(1)); %! assert (skewness (x), 1/sqrt (a(1)), a(3)); %! assert (kurtosis (x), 1/a(1), 3*a(3)); %! endfor %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randp ("state", 12); %! for a = [5, 15, 1e9; 0.03, 0.03, -5e-3; 0.03, 0.03, 0.03] %! x = randp (a(1)*ones (100000, 1), 100000, 1); %! assert (min (x) >= 0); # *** Please report this!!! *** %! assert (mean (x), a(1), a(2)); %! assert (var (x), a(1), 0.02*a(1)); %! assert (skewness (x), 1/sqrt (a(1)), a(3)); %! assert (kurtosis (x), 1/a(1), 3*a(3)); %! endfor %! endif %!test %! randp ("seed", 12); %! assert (randp ([-inf, -1, 0, inf, nan]), [nan, nan, 0, nan, nan]); # *** Please report %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randp ("seed", 12); %! for a = [5, 15, 1e9; 0.03, 0.03, -5e-3; 0.03, 0.03, 0.03] %! x = randp (a(1), 100000, 1); %! assert (min (x) >= 0); # *** Please report this!!! *** %! assert (mean (x), a(1), a(2)); %! assert (var (x), a(1), 0.02*a(1)); %! assert (skewness (x), 1/sqrt (a(1)), a(3)); %! assert (kurtosis (x), 1/a(1), 3*a(3)); %! endfor %! endif %!test %! if (__random_statistical_tests__) %! # statistical tests may fail occasionally. %! randp ("seed", 12); %! for a = [5, 15, 1e9; 0.03, 0.03, -5e-3; 0.03, 0.03, 0.03] %! x = randp (a(1)*ones (100000, 1), 100000, 1); %! assert (min (x) >= 0); # *** Please report this!!! *** %! assert (mean (x), a(1), a(2)); %! assert (var (x), a(1), 0.02*a(1)); %! assert (skewness (x), 1/sqrt (a(1)), a(3)); %! assert (kurtosis (x), 1/a(1), 3*a(3)); %! endfor %! endif */ DEFUN (randperm, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} randperm (@var{n})\n\ @deftypefnx {Built-in Function} {} randperm (@var{n}, @var{m})\n\ Return a row vector containing a random permutation of @code{1:@var{n}}.\n\ If @var{m} is supplied, return @var{m} unique entries, sampled without\n\ replacement from @code{1:@var{n}}. The complexity is O(@var{n}) in\n\ memory and O(@var{m}) in time, unless @var{m} < @var{n}/5, in which case\n\ O(@var{m}) memory is used as well. The randomization is performed using\n\ rand(). All permutations are equally likely.\n\ @seealso{perms}\n\ @end deftypefn") { #ifdef USE_UNORDERED_MAP_WITH_TR1 using std::tr1::unordered_map; #else using std::unordered_map; #endif int nargin = args.length (); octave_value retval; if (nargin == 1 || nargin == 2) { octave_idx_type n, m; n = args(0).idx_type_value (true); if (nargin == 2) m = args(1).idx_type_value (true); else m = n; if (m < 0 || n < 0) error ("randperm: M and N must be non-negative"); if (m > n) error ("randperm: M must be less than or equal to N"); // Quick and dirty heuristic to decide if we allocate or not the // whole vector for tracking the truncated shuffle. bool short_shuffle = m < n/5 && m < 1e5; if (! error_state) { // Generate random numbers. NDArray r = octave_rand::nd_array (dim_vector (1, m)); double *rvec = r.fortran_vec (); octave_idx_type idx_len = short_shuffle ? m : n; Array<octave_idx_type> idx (dim_vector (1, idx_len)); octave_idx_type *ivec = idx.fortran_vec (); for (octave_idx_type i = 0; i < idx_len; i++) ivec[i] = i; if (short_shuffle) { unordered_map<octave_idx_type, octave_idx_type> map (m); // Perform the Knuth shuffle only keeping track of moved // entries in the map for (octave_idx_type i = 0; i < m; i++) { octave_idx_type k = i + gnulib::floor (rvec[i] * (n - i)); //For shuffling first m entries, no need to use extra //storage if (k < m) { std::swap (ivec[i], ivec[k]); } else { if (map.find (k) == map.end ()) map[k] = k; std::swap (ivec[i], map[k]); } } } else { // Perform the Knuth shuffle of the first m entries for (octave_idx_type i = 0; i < m; i++) { octave_idx_type k = i + gnulib::floor (rvec[i] * (n - i)); std::swap (ivec[i], ivec[k]); } } // Convert to doubles, reusing r. for (octave_idx_type i = 0; i < m; i++) rvec[i] = ivec[i] + 1; if (m < n) idx.resize (dim_vector (1, m)); // Now create an array object with a cached idx_vector. retval = new octave_matrix (r, idx_vector (idx)); } } else print_usage (); return retval; } /* %!assert (sort (randperm (20)), 1:20) %!assert (length (randperm (20,10)), 10) %!test %! rand ("seed", 0); %! for i = 1:100 %! p = randperm (305, 30); %! assert (length (unique (p)), 30); %! endfor */