Mercurial > hg > octave-lyh
view scripts/control/util/zgfmul.m @ 7492:bd1168732c95
datestr.m: fix 6 datenum vector bug
author | bill@denney.ws |
---|---|
date | Wed, 13 Feb 2008 22:46:24 -0500 |
parents | b01db194c526 |
children |
line wrap: on
line source
## Copyright (C) 1996, 1998, 2000, 2004, 2005, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{y} =} zgfmul (@var{a}, @var{b}, @var{c}, @var{d}, @var{x}) ## Compute product of @var{zgep} incidence matrix @math{F} with vector @var{x}. ## Used by @command{zgepbal} (in @command{zgscal}) as part of generalized conjugate gradient ## iteration. ## @end deftypefn ## References: ## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA ## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989 ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Conversion to Octave July 3, 1994 function y = zgfmul (a, b, c, d, x) if (nargin != 5) print_usage (); endif [n, m] = size (b); [p, m1] = size (c); nm = n+m; y = zeros (nm+p, 1); ## construct F column by column for jj = 1:n Fj = zeros (nm+p, 1); ## rows 1:n: F1 aridx = complement (jj, find (a(jj,:) != 0)); acidx = complement (jj, find (a(:,jj) != 0)); bidx = find (b(jj,:) != 0); cidx = find (c(:,jj) != 0); Fj(aridx) = Fj(aridx) - 1; # off diagonal entries of F1 Fj(acidx) = Fj(acidx) - 1; ## diagonal entry of F1 Fj(jj) = length (aridx) + length (acidx) + length (bidx) + length (cidx); ## B' incidence if (! isempty (bidx)) Fj(n+bidx) = 1; endif ## -C incidence if (! isempty (cidx)) Fj(n+m+cidx) = -1; endif y = y + x(jj)*Fj; # multiply by corresponding entry of x endfor for jj = 1:m Fj = zeros (nm+p, 1); bidx = find (b(:,jj) != 0); ## B incidence if (! isempty (bidx)) Fj(bidx) = 1; endif didx = find (d(:,jj) != 0); ## D incidence if (! isempty (didx)) Fj(n+m+didx) = 1; endif Fj(n+jj) = length(bidx) + length(didx); # F2 is diagonal y = y + x(n+jj)*Fj; # multiply by corresponding entry of x endfor for jj = 1:p Fj = zeros (nm+p, 1); cidx = find (c(jj,:) != 0); ## -C' incidence if (! isempty (cidx)) Fj(cidx) = -1; endif didx = find(d(jj,:) != 0); ## D' incidence if (! isempty (didx)) Fj(n+didx) = 1; endif Fj(n+m+jj) = length (cidx) + length (didx); # F2 is diagonal y = y + x(n+m+jj)*Fj; # multiply by corresponding entry of x endfor endfunction