Mercurial > hg > octave-lyh
view scripts/plot/peaks.m @ 8874:bd1b1fe9c6e9 ss-3-1-53
bump version info for snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 25 Feb 2009 18:35:47 -0500 |
parents | 30100a15625c |
children | dbd0c77e575e |
line wrap: on
line source
## Copyright (C) 2007 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} peaks () ## @deftypefnx {Function File} {} peaks (@var{n}) ## @deftypefnx {Function File} {} peaks (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{z} =} peaks (@dots{}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} peaks (@dots{}) ## Generate a function with lots of local maxima and minima. The function ## has the form ## ## @iftex ## @tex ## $f(x,y) = 3 (1 - x) ^ 2 e ^ {\left(-x^2 - (y+1)^2\right)} - 10 \left({x \over 5} - x^3 - y^5)\right) - {1 \over 3} e^{\left(-(x+1)^2 - y^2\right)}$ ## @end tex ## @end iftex ## @ifnottex ## @verbatim ## f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ... ## - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ... ## - 1/3*exp(-(x+1)^2 - y^2) ## @end verbatim ## @end ifnottex ## ## Called without a return argument, @code{peaks} plots the surface of the ## above function using @code{mesh}. If @var{n} is a scalar, the @code{peaks} ## returns the values of the above function on a @var{n}-by-@var{n} mesh over ## the range @code{[-3,3]}. The default value for @var{n} is 49. ## ## If @var{n} is a vector, then it represents the @var{x} and @var{y} values ## of the grid on which to calculate the above function. The @var{x} and ## @var{y} values can be specified separately. ## @seealso{surf, mesh, meshgrid} ## @end deftypefn ## Expression for the peaks function was taken from the following paper: ## http://www.control.hut.fi/Kurssit/AS-74.115/Material/GENALGgoga.pdf function [X_out, Y_out, Z_out] = peaks (x, y) if (nargin == 0) x = y = linspace (-3, 3, 49); elseif (nargin == 1) if length(x) > 1 y = x; else x = y = linspace (-3, 3, x); endif endif if (isvector (x) && isvector (y)) [X, Y] = meshgrid (x, y); else X = x; Y = y; endif Z = 3 * (1 - X) .^ 2 .* exp(- X .^ 2 - (Y + 1) .^ 2) \ - 10 * (X / 5 - X .^ 3 - Y .^ 5) .* exp(- X .^ 2 - Y .^ 2) \ - 1 / 3 * exp(- (X + 1) .^ 2 - Y .^ 2); if (nargout == 0) surf (x, y, Z); elseif (nargout == 1) X_out = Z; else X_out = X; Y_out = Y; Z_out = Z; endif endfunction