Mercurial > hg > octave-lyh
view scripts/control/base/ctrb.m @ 7535:bda16af4fd2f
oct-rand.cc (get_dist_id): initialize retval
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 26 Feb 2008 18:45:57 -0500 |
parents | 4a375de63f66 |
children |
line wrap: on
line source
## Copyright (C) 1997, 2000, 2002, 2004, 2005, 2006, 2007 Kai P. Mueller ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} ctrb (@var{sys}, @var{b}) ## @deftypefnx {Function File} {} ctrb (@var{a}, @var{b}) ## Build controllability matrix: ## @iftex ## @tex ## $$ Q_s = [ B AB A^2B \ldots A^{n-1}B ] $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## 2 n-1 ## Qs = [ B AB A B ... A B ] ## @end example ## @end ifinfo ## ## of a system data structure or the pair (@var{a}, @var{b}). ## ## @command{ctrb} forms the controllability matrix. ## The numerical properties of @command{is_controllable} ## are much better for controllability tests. ## @end deftypefn ## Author: Kai P. Mueller <mueller@ifr.ing.tu-bs.de> ## Created: November 4, 1997 ## based on is_controllable.m of Scottedward Hodel function Qs = ctrb (sys, b) if (nargin == 2) a = sys; elseif (nargin == 1 && isstruct (sys)) sysupdate (sys, "ss"); [a, b] = sys2ss (sys); else print_usage (); endif if (! is_abcd (a, b)) Qs = []; else ## no need to check dimensions, we trust is_abcd(). [na, ma] = size (a); ## using imb avoids name conflict with the "mb" function [inb, imb] = size (b); Qs = zeros (na, ma*imb); for i = 1:na Qs(:,(i-1)*imb+1:i*imb) = b; b = a * b; endfor endif endfunction