Mercurial > hg > octave-lyh
view scripts/statistics/distributions/expinv.m @ 5411:bee21f388110
[project @ 2005-07-13 17:53:44 by jwe]
author | jwe |
---|---|
date | Wed, 13 Jul 2005 17:53:49 +0000 |
parents | 56e066f5efc1 |
children | 2a16423e4aa0 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} expinv (@var{x}, @var{lambda}) ## For each element of @var{x}, compute the quantile (the inverse of the ## CDF) at @var{x} of the exponential distribution with parameter ## @var{lambda}. ## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Quantile function of the exponential distribution function inv = expinv (x, l) if (nargin != 2) usage ("expinv (x, lambda)"); endif if (!isscalar (x) && !isscalar(l)) [retval, x, l] = common_size (x, l); if (retval > 0) error ("expinv: x and lambda must be of common size or scalar"); endif endif if (isscalar (x)) sz = size (l); else sz = size (x); endif inv = zeros (sz); k = find (!(l > 0) | (x < 0) | (x > 1) | isnan (x)); if (any (k)) inv(k) = NaN; endif k = find ((x == 1) & (l > 0)); if (any (k)) inv(k) = Inf; endif k = find ((x > 0) & (x < 1) & (l > 0)); if (any (k)) if isscalar (l) inv(k) = - log (1 - x(k)) ./ l; elseif isscalar (x) inv(k) = - log (1 - x) ./ l(k); else inv(k) = - log (1 - x(k)) ./ l(k); endif endif endfunction