Mercurial > hg > octave-lyh
view scripts/general/pol2cart.m @ 9141:c1fff751b5a8
Update section 17.1 (Utility Functions) of arith.txi
Split section into "Exponents and Logarithms" and "Utility Functions"
Use Tex in many more of the doc strings for pretty printing in pdf format.
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Mon, 20 Apr 2009 17:16:09 -0700 |
parents | eb63fbe60fab |
children | 742cf6388a8f |
line wrap: on
line source
## Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2009 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z}) ## Transform polar or cylindrical to cartesian coordinates. ## @var{theta}, @var{r} (and @var{z}) must be of same shape, or scalar. ## @var{theta} describes the angle relative to the x-axis. ## @var{r} is the distance to the z-axis (0, 0, z). ## @seealso{cart2pol, cart2sph, sph2cart} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [x, y, z] = pol2cart (theta, r, z) if (nargin < 2 || nargin > 3) error ("pol2cart: number of arguments must be 2 or 3"); endif if (nargin == 2 && nargout > 2) error ("pol2cart: number of output arguments must not be greater than number of input arguments"); endif if ((ismatrix (theta) && ismatrix (r) && (nargin == 2 || ismatrix (z))) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)) && (nargin == 2 || size_equal (theta, z) || isscalar (theta) || isscalar (z)) && (nargin == 2 || size_equal (r, z) || isscalar (r) || isscalar (z))) x = cos (theta) .* r; y = sin (theta) .* r; else error ("pol2cart: arguments must be matrices of same size, or scalar"); endif endfunction %!test %! t = [0, 0.5, 1] * pi; %! r = 1; %! [x, y] = pol2cart (t, r); %! assert (x, [1, 0, -1], sqrt(eps)); %! assert (y, [0, 1, 0], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! [x, y] = pol2cart (t, r); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %! assert (z, z2); %!test %! t = 0; %! r = [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 0, 0], sqrt(eps)); %! assert (z, z2); %!test %! t = [1, 1, 1]*pi/4; %! r = 1; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 1, 1] / sqrt(2), eps); %! assert (y, [1, 1, 1] / sqrt(2), eps); %! assert (z, z2); %!test %! t = 0; %! r = [1, 2, 3]; %! z = 1; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 2, 3], eps); %! assert (y, [0, 0, 0] / sqrt(2), eps); %! assert (z, z2);