Mercurial > hg > octave-lyh
view scripts/general/rat.m @ 9141:c1fff751b5a8
Update section 17.1 (Utility Functions) of arith.txi
Split section into "Exponents and Logarithms" and "Utility Functions"
Use Tex in many more of the doc strings for pretty printing in pdf format.
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Mon, 20 Apr 2009 17:16:09 -0700 |
parents | 1bf0ce0930be |
children | 952d4df5b686 |
line wrap: on
line source
## Copyright (C) 2001, 2007, 2008, 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} rat (@var{x}, @var{tol}) ## @deftypefnx {Function File} {[@var{n}, @var{d}] =} rat (@var{x}, @var{tol}) ## ## Find a rational approximation to @var{x} within the tolerance defined ## by @var{tol} using a continued fraction expansion. For example, ## ## @example ## @group ## rat(pi) = 3 + 1/(7 + 1/16) = 355/113 ## rat(e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7))))) ## = 1457/536 ## @end group ## @end example ## ## Called with two arguments returns the numerator and denominator separately ## as two matrices. ## @end deftypefn ## @seealso{rats} function [n,d] = rat(x,tol) if (nargin != [1,2] || nargout > 2) print_usage (); endif y = x(:); ## Replace Inf with 0 while calculating ratios. y(isinf(y)) = 0; ## default norm if (nargin < 2) tol = 1e-6 * norm(y,1); endif ## First step in the approximation is the integer portion ## First element in the continued fraction. n = round(y); d = ones(size(y)); frac = y-n; lastn = ones(size(y)); lastd = zeros(size(y)); nd = ndims(y); nsz = numel (y); steps = zeros([nsz, 0]); ## Grab new factors until all continued fractions converge. while (1) ## Determine which fractions have not yet converged. idx = find(abs (y-n./d) >= tol); if (isempty(idx)) if (isempty (steps)) steps = NaN .* ones (nsz, 1); endif break; endif ## Grab the next step in the continued fraction. flip = 1./frac(idx); ## Next element in the continued fraction. step = round(flip); if (nargout < 2) tsteps = NaN .* ones (nsz, 1); tsteps (idx) = step; steps = [steps, tsteps]; endif frac(idx) = flip-step; ## Update the numerator/denominator. nextn = n; nextd = d; n(idx) = n(idx).*step + lastn(idx); d(idx) = d(idx).*step + lastd(idx); lastn = nextn; lastd = nextd; endwhile if (nargout == 2) ## Move the minus sign to the top. n = n.*sign(d); d = abs(d); ## Return the same shape as you receive. n = reshape(n, size(x)); d = reshape(d, size(x)); ## Use 1/0 for Inf. n(isinf(x)) = sign(x(isinf(x))); d(isinf(x)) = 0; ## Reshape the output. n = reshape (n, size (x)); d = reshape (d, size (x)); else n = ""; nsteps = size(steps, 2); for i = 1: nsz s = [int2str(y(i))," "]; j = 1; while (true) step = steps(i, j++); if (isnan (step)) break; endif if (j > nsteps || isnan (steps(i, j))) if (step < 0) s = [s(1:end-1), " + 1/(", int2str(step), ")"]; else s = [s(1:end-1), " + 1/", int2str(step)]; endif break; else s = [s(1:end-1), " + 1/(", int2str(step), ")"]; endif endwhile s = [s, repmat(")", 1, j-2)]; n_nc = columns (n); s_nc = columns (s); if (n_nc > s_nc) s(:,s_nc+1:n_nc) = " " elseif (s_nc > n_nc) n(:,n_nc+1:s_nc) = " "; endif n = cat (1, n, s); endfor endif endfunction