Mercurial > hg > octave-lyh
view scripts/general/pol2cart.m @ 8934:c2099a4d12ea
partially optimize accumarray
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 09 Mar 2009 10:59:19 +0100 |
parents | eb63fbe60fab |
children | 742cf6388a8f |
line wrap: on
line source
## Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2009 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z}) ## Transform polar or cylindrical to cartesian coordinates. ## @var{theta}, @var{r} (and @var{z}) must be of same shape, or scalar. ## @var{theta} describes the angle relative to the x-axis. ## @var{r} is the distance to the z-axis (0, 0, z). ## @seealso{cart2pol, cart2sph, sph2cart} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [x, y, z] = pol2cart (theta, r, z) if (nargin < 2 || nargin > 3) error ("pol2cart: number of arguments must be 2 or 3"); endif if (nargin == 2 && nargout > 2) error ("pol2cart: number of output arguments must not be greater than number of input arguments"); endif if ((ismatrix (theta) && ismatrix (r) && (nargin == 2 || ismatrix (z))) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)) && (nargin == 2 || size_equal (theta, z) || isscalar (theta) || isscalar (z)) && (nargin == 2 || size_equal (r, z) || isscalar (r) || isscalar (z))) x = cos (theta) .* r; y = sin (theta) .* r; else error ("pol2cart: arguments must be matrices of same size, or scalar"); endif endfunction %!test %! t = [0, 0.5, 1] * pi; %! r = 1; %! [x, y] = pol2cart (t, r); %! assert (x, [1, 0, -1], sqrt(eps)); %! assert (y, [0, 1, 0], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! [x, y] = pol2cart (t, r); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %! assert (z, z2); %!test %! t = 0; %! r = [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 0, 0], sqrt(eps)); %! assert (z, z2); %!test %! t = [1, 1, 1]*pi/4; %! r = 1; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 1, 1] / sqrt(2), eps); %! assert (y, [1, 1, 1] / sqrt(2), eps); %! assert (z, z2); %!test %! t = 0; %! r = [1, 2, 3]; %! z = 1; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 2, 3], eps); %! assert (y, [0, 0, 0] / sqrt(2), eps); %! assert (z, z2);