Mercurial > hg > octave-lyh
view scripts/plot/shrinkfaces.m @ 14872:c2dbdeaa25df
maint: use rows() and columns() to clarify m-files.
* gradient.m, interp1q.m, rat.m, tsearchn.m, image.m, imwrite.m, area.m,
contourc.m, hist.m, isocolors.m, isonormals.m, meshz.m, print.m, __bar__.m,
__go_draw_axes__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__print_parse_opts__.m, __quiver__.m, rose.m, shrinkfaces.m, stairs.m,
surfnorm.m, tetramesh.m, text.m, deconv.m, spline.m, intersect.m, setdiff.m,
setxor.m, union.m, periodogram.m, pcg.m, perms.m: Replace size (x,1) with
rows (x) and size(x,2) with columns(x).
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 13:34:19 -0700 |
parents | 1804d5422f61 |
children | f3b5cadfd6d5 |
line wrap: on
line source
## Copyright (C) 2012 Martin Helm ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} shrinkfaces (@var{p}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{p}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{fv}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{f}, @var{v}, @var{sf}) ## @deftypefnx {Function File} {[@var{nf}, @var{nv}] =} shrinkfaces (@dots{}) ## ## Reduce the faces area for a given patch, structure or explicit faces ## and points matrices by a scale factor @var{sf}. The structure ## @var{fv} must contain the fields 'faces' and 'vertices'. If the ## factor @var{sf} is omitted then a default of 0.3 is used. ## ## Given a patch handle as the first input argument and no output ## parameters, perform the shrinking of the patch faces in place and ## redraw the patch. ## ## If called with one output argument, return a structure with fields ## 'faces', 'vertices', and 'facevertexcdata' containing the data after ## shrinking which can then directly be used as an input argument for the ## @command{patch} function. ## ## Performing the shrinking on faces which are not convex can lead to ## undesired results. ## ## For example, ## ## @example ## @group ## [phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4)); ## tri = delaunay (phi(:), r(:)); ## v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))]; ## clf () ## p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none"); ## fv = shrinkfaces (p); ## patch (fv) ## axis equal ## grid on ## @end group ## @end example ## ## @noindent ## draws a triangulated 3/4 circle and the corresponding shrunken ## version. ## @seealso{patch} ## @end deftypefn ## Author: Martin Helm <martin@mhelm.de> function [nf, nv] = shrinkfaces (varargin) if (nargin < 1 || nargin > 3 || nargout > 2) print_usage (); endif sf = 0.3; p = varargin{1}; colors = []; if (ishandle (p) && nargin < 3) faces = get (p, "Faces"); vertices = get (p, "Vertices"); colors = get (p, "FaceVertexCData"); if (nargin == 2) sf = varargin{2}; endif elseif (isstruct (p) && nargin < 3) faces = p.faces; vertices = p.vertices; if (isfield (p, "facevertexcdata")) colors = p.facevertexcdata; endif if (nargin == 2) sf = varargin{2}; endif elseif (ismatrix (p) && nargin >= 2 && ismatrix (varargin{2})) faces = p; vertices = varargin{2}; if (nargin == 3) sf = varargin{3}; endif else print_usage (); endif if (! isscalar (sf) || sf <= 0) error ("shrinkfaces: scale factor must be a positive scalar") endif n = columns (vertices); if (n < 2 || n > 3) error ("shrinkfaces: only 2D and 3D patches are supported") endif m = columns (faces); if (m < 3) error ("shrinkfaces: faces must consist of at least 3 vertices") endif v = vertices(faces'(:), :); if (isempty (colors) || rows (colors) == rows (faces)) c = colors; elseif (rows (colors) == rows (vertices)) c = colors(faces'(:), :); else ## Discard inconsistent color data. c = []; endif sv = rows (v); ## we have to deal with a probably very large number of vertices, so ## use sparse we use as midpoint (1/m, ..., 1/m) in generalized ## barycentric coordinates. midpoints = full (kron ( speye (sv / m), ones (m, m) / m) * sparse (v)); v = sqrt (sf) * (v - midpoints) + midpoints; f = reshape (1:sv, m, sv / m)'; switch (nargout) case 0 if (ishandle (p)) set (p, "FaceVertexCData", [], "CData", []) # avoid exceptions set (p, "Vertices", v, "Faces", f, "FaceVertexCData", c) else nf = struct ("faces", f, "vertices", v, "facevertexcdata", c); endif case 1 nf = struct ("faces", f, "vertices", v, "facevertexcdata", c); case 2 nf = f; nv = v; endswitch endfunction %!demo %! faces = [1 2 3; 1 3 4]; %! vertices = [0 0; 1 0; 1 1; 0 1]; %! clf () %! patch ("Faces", faces, "Vertices", vertices, "FaceColor", "none") %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv) %! axis equal %!demo %! faces = [1 2 3 4; 5 6 7 8]; %! vertices = [0 0; 1 0; 2 1; 1 1; 2 0; 3 0; 4 1; 3.5 1]; %! clf () %! patch ("Faces", faces, "Vertices", vertices, "FaceColor", "none") %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv) %! axis equal %! grid on %!demo %! faces = [1 2 3 4]; %! vertices = [-1 2; 0 0; 1 2; 0 1]; %! clf () %! patch ("Faces", faces, "Vertices", vertices, "FaceColor", "none") %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv) %! axis equal %! grid on %! title "faces which are not convex are clearly not allowed" %!demo %! [phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4)); %! tri = delaunay (phi(:), r(:)); %! v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))]; %! clf () %! p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none"); %! fv = shrinkfaces (p); %! patch (fv) %! axis equal %! grid on %!demo %! N = 10; # N intervals per axis %! [x, y, z] = meshgrid (linspace (-4,4,N+1)); %! val = x.^3 + y.^3 + z.^3; %! fv = isosurface (x, y, z, val, 3, z); %! %! clf () %! p = patch ("Faces", fv.faces, "Vertices", fv.vertices, "FaceVertexCData", ... %! fv.facevertexcdata, "FaceColor", "interp", "EdgeColor", "black"); %! axis equal %! view (115, 30) %! drawnow %! shrinkfaces (p, 0.6); %!shared faces, vertices, nfv, nfv2 %! faces = [1 2 3]; %! vertices = [0 0 0; 1 0 0; 1 1 0]; %! nfv = shrinkfaces (faces, vertices, 0.7); %! nfv2 = shrinkfaces (nfv, 1/0.7); %!assert (isfield (nfv, "faces")); %!assert (isfield (nfv, "vertices")); %!assert (size (nfv.faces), [1 3]); %!assert (size (nfv.vertices), [3 3]); %!assert (norm (nfv2.vertices - vertices), 0, 2*eps);