Mercurial > hg > octave-lyh
view scripts/polynomial/ppder.m @ 14872:c2dbdeaa25df
maint: use rows() and columns() to clarify m-files.
* gradient.m, interp1q.m, rat.m, tsearchn.m, image.m, imwrite.m, area.m,
contourc.m, hist.m, isocolors.m, isonormals.m, meshz.m, print.m, __bar__.m,
__go_draw_axes__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__print_parse_opts__.m, __quiver__.m, rose.m, shrinkfaces.m, stairs.m,
surfnorm.m, tetramesh.m, text.m, deconv.m, spline.m, intersect.m, setdiff.m,
setxor.m, union.m, periodogram.m, pcg.m, perms.m: Replace size (x,1) with
rows (x) and size(x,2) with columns(x).
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 13:34:19 -0700 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2008-2012 VZLU Prague, a.s., Czech Republic ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this software; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {ppd =} ppder (pp) ## @deftypefnx {Function File} {ppd =} ppder (pp, m) ## Compute the piecewise @var{m}-th derivative of a piecewise polynomial ## struct @var{pp}. If @var{m} is omitted the first derivative is calculated. ## @seealso{mkpp, ppval, ppint} ## @end deftypefn function ppd = ppder (pp, m) if ((nargin < 1) || (nargin > 2)) print_usage (); elseif (nargin == 1) m = 1; endif if (! (isstruct (pp) && strcmp (pp.form, "pp"))) error ("ppder: PP must be a structure"); endif [x, p, n, k, d] = unmkpp (pp); if (k - m <= 0) x = [x(1) x(end)]; pd = zeros (prod (d), 1); else f = k : -1 : 1; ff = bincoeff (f, m + 1) .* factorial (m + 1) ./ f; k -= m; pd = p(:,1:k) * diag (ff(1:k)); endif ppd = mkpp (x, pd, d); endfunction %!shared x,y,pp,ppd %! x = 0:8; %! y = [x.^2; x.^3+1]; %! pp = spline (x, y); %! ppd = ppder (pp); %!assert (ppval (ppd, x), [2*x; 3*x.^2], 1e-14) %!assert (ppd.order, 3) %! ppd = ppder (pp, 2); %!assert (ppval (ppd, x), [2*ones(size (x)); 6*x], 1e-14) %!assert (ppd.order, 2) %! ppd = ppder (pp, 3); %!assert (ppd.order, 1) %!assert (ppd.pieces, 8) %!assert (size (ppd.coefs), [16, 1]) %! ppd = ppder (pp, 4); %!assert (ppd.order, 1) %!assert (ppd.pieces, 1) %!assert (size (ppd.coefs), [2, 1]) %!assert (ppval (ppd,x), zeros (size (y)), 1e-14)