view scripts/polynomial/ppder.m @ 14872:c2dbdeaa25df

maint: use rows() and columns() to clarify m-files. * gradient.m, interp1q.m, rat.m, tsearchn.m, image.m, imwrite.m, area.m, contourc.m, hist.m, isocolors.m, isonormals.m, meshz.m, print.m, __bar__.m, __go_draw_axes__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m, __print_parse_opts__.m, __quiver__.m, rose.m, shrinkfaces.m, stairs.m, surfnorm.m, tetramesh.m, text.m, deconv.m, spline.m, intersect.m, setdiff.m, setxor.m, union.m, periodogram.m, pcg.m, perms.m: Replace size (x,1) with rows (x) and size(x,2) with columns(x).
author Rik <octave@nomad.inbox5.com>
date Tue, 17 Jul 2012 13:34:19 -0700
parents f3d52523cde1
children
line wrap: on
line source

## Copyright (C) 2008-2012 VZLU Prague, a.s., Czech Republic
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this software; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {ppd =} ppder (pp)
## @deftypefnx {Function File} {ppd =} ppder (pp, m)
## Compute the piecewise @var{m}-th derivative of a piecewise polynomial
## struct @var{pp}.  If @var{m} is omitted the first derivative is calculated.
## @seealso{mkpp, ppval, ppint}
## @end deftypefn

function ppd = ppder (pp, m)

  if ((nargin < 1) || (nargin > 2))
    print_usage ();
  elseif (nargin == 1)
    m = 1;
  endif

  if (! (isstruct (pp) && strcmp (pp.form, "pp")))
    error ("ppder: PP must be a structure");
  endif

  [x, p, n, k, d] = unmkpp (pp);

  if (k - m <= 0)
    x = [x(1) x(end)];
    pd = zeros (prod (d), 1);
  else
    f = k : -1 : 1;
    ff = bincoeff (f, m + 1) .* factorial (m + 1) ./ f;
    k -= m;
    pd = p(:,1:k) * diag (ff(1:k));
  endif

  ppd = mkpp (x, pd, d);
endfunction


%!shared x,y,pp,ppd
%! x = 0:8;
%! y = [x.^2; x.^3+1];
%! pp = spline (x, y);
%! ppd = ppder (pp);
%!assert (ppval (ppd, x), [2*x; 3*x.^2], 1e-14)
%!assert (ppd.order, 3)
%! ppd = ppder (pp, 2);
%!assert (ppval (ppd, x), [2*ones(size (x)); 6*x], 1e-14)
%!assert (ppd.order, 2)
%! ppd = ppder (pp, 3);
%!assert (ppd.order, 1)
%!assert (ppd.pieces, 8)
%!assert (size (ppd.coefs), [16, 1])
%! ppd = ppder (pp, 4);
%!assert (ppd.order, 1)
%!assert (ppd.pieces, 1)
%!assert (size (ppd.coefs), [2, 1])
%!assert (ppval (ppd,x), zeros (size (y)), 1e-14)