Mercurial > hg > octave-lyh
view scripts/linear-algebra/issymmetric.m @ 17521:c3a3532e3d98
linsolve.m: Add new function for Matlab compatibility.
* scripts/linear-algebra/linsolve.m: New function.
* scripts/linear-algebra/module.mk: Add linsolve.m to build system.
* NEWS: Announce new function.
author | Nir Krakauer < nkrakauer@ccny.cuny.edu> |
---|---|
date | Thu, 26 Sep 2013 08:30:26 -0700 |
parents | 5d3a684236b0 |
children |
line wrap: on
line source
## Copyright (C) 1996-2012 John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} issymmetric (@var{x}) ## @deftypefnx {Function File} {} issymmetric (@var{x}, @var{tol}) ## Return true if @var{x} is a symmetric matrix within the tolerance specified ## by @var{tol}. The default tolerance is zero (uses faster code). ## Matrix @var{x} is considered symmetric if ## @code{norm (@var{x} - @var{x}.', Inf) / norm (@var{x}, Inf) < @var{tol}}. ## @seealso{ishermitian, isdefinite} ## @end deftypefn ## Author: A. S. Hodel <scotte@eng.auburn.edu> ## Created: August 1993 ## Adapted-By: jwe function retval = issymmetric (x, tol = 0) if (nargin < 1 || nargin > 2) print_usage (); endif retval = isnumeric (x) && issquare (x); if (retval) if (tol == 0) retval = all ((x == x.')(:)); else norm_x = norm (x, inf); retval = norm_x == 0 || norm (x - x.', inf) / norm_x <= tol; endif endif endfunction %!assert (issymmetric (1)) %!assert (! issymmetric ([1, 2])) %!assert (issymmetric ([])) %!assert (issymmetric ([1, 2; 2, 1])) %!assert (! (issymmetric ("test"))) %!assert (issymmetric ([1, 2.1; 2, 1.1], 0.2)) %!assert (issymmetric ([1, 2i; 2i, 1])) %!assert (! (issymmetric ("t"))) %!assert (! (issymmetric (["te"; "et"]))) %!test %! s.a = 1; %! assert (! issymmetric (s)); %!error issymmetric ([1, 2; 2, 1], 0, 0) %!error issymmetric ()