Mercurial > hg > octave-lyh
view scripts/specfun/isprime.m @ 10657:c6833d31f34e
optimize primes and isprime
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Tue, 25 May 2010 13:46:22 +0200 |
parents | d1cc2e0ddf55 |
children | faff5367cc05 |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007, 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} isprime (@var{n}) ## Return true if @var{n} is a prime number, false otherwise. ## ## Something like the following is much faster if you need to test a lot ## of small numbers: ## ## @example ## @var{t} = ismember (@var{n}, primes (max (@var{n} (:)))); ## @end example ## ## If max(n) is very large, then you should be using special purpose ## factorization code. ## ## @seealso{primes, factor, gcd, lcm} ## @end deftypefn function t = isprime (n) if (nargin == 1) n = n(:); idx = 1:numel (n); for p = primes (sqrt (max (n(:)))) if (isempty (idx)) break; endif mask = rem (n, p) != 0; n = n(mask); idx = idx(mask); endfor t = false (size (n)); t(idx) = true; else print_usage (); endif endfunction %!assert (isprime (4), logical (0)); %!assert (isprime (3), logical (1)); %!assert (isprime (magic (3)), logical ([0, 0, 0; 1, 1, 1; 0, 0, 1])); %!error isprime () %!error isprime (1, 2)