Mercurial > hg > octave-lyh
view scripts/statistics/distributions/cauchy_pdf.m @ 11587:c792872f8942
all script files: untabify and strip trailing whitespace
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 20 Jan 2011 17:35:29 -0500 |
parents | fd0a3ac60b0e |
children | 19b9f17d22af |
line wrap: on
line source
## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cauchy_pdf (@var{x}, @var{location}, @var{scale}) ## For each element of @var{x}, compute the probability density function ## (PDF) at @var{x} of the Cauchy distribution with location parameter ## @var{location} and scale parameter @var{scale} > 0. Default values are ## @var{location} = 0, @var{scale} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the Cauchy distribution function pdf = cauchy_pdf (x, location, scale) if (! (nargin == 1 || nargin == 3)) print_usage (); endif if (nargin == 1) location = 0; scale = 1; endif if (!isscalar (location) || !isscalar (scale)) [retval, x, location, scale] = common_size (x, location, scale); if (retval > 0) error ("cauchy_pdf: X, LOCATION and SCALE must be of common size or scalar"); endif endif sz = size (x); pdf = NaN (sz); k = find ((x > -Inf) & (x < Inf) & (location > -Inf) & (location < Inf) & (scale > 0) & (scale < Inf)); if (any (k)) if (isscalar (location) && isscalar (scale)) pdf(k) = ((1 ./ (1 + ((x(k) - location) ./ scale) .^ 2)) / pi ./ scale); else pdf(k) = ((1 ./ (1 + ((x(k) - location(k)) ./ scale(k)) .^ 2)) / pi ./ scale(k)); endif endif endfunction